Characterization of summability points of Nörlund methods
HTML articles powered by AMS MathViewer
- by Karl-Goswin Grosse-Erdmann and Karin Stadtmüller
- Trans. Amer. Math. Soc. 347 (1995), 2563-2574
- DOI: https://doi.org/10.1090/S0002-9947-1995-1260167-5
- PDF | Request permission
Abstract:
By a theorem of F. Leja any regular Nörlund method $(N,p)$ sums a given power series $f$ at most at countably many points outside its disc of convergence. This result was recently extended to a class of non-regular Nörlund methods by K. Stadtmüller. In this paper we obtain a more detailed picture showing how possible points of summability and the value of summation depend on $p$ and $f$.References
- R. P. Agnew, Summability of power series, Amer. Math. Monthly 53 (1946), 251–259. MR 15525, DOI 10.2307/2305093
- David Borwein and Amnon Jakimovski, Matrix transformations of power series, Proc. Amer. Math. Soc. 122 (1994), no. 2, 511–523. MR 1198451, DOI 10.1090/S0002-9939-1994-1198451-0 G. Bouligand, Sur la comparaison de certains procédés de sommation des séries divergentes, Enseign. Math. 26 (1927), 15-27.
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620 F. Leja, Sur la sommation des séries entières par la méthode des moyennes, Bull. Sci. Math. 54 (1930), 239-245.
- Karin Stadtmüller, Summability of power series by nonregular Nörlund-methods, J. Approx. Theory 68 (1992), no. 1, 33–44. MR 1143959, DOI 10.1016/0021-9045(92)90097-8
- P. Vermes, The application of $\gamma$-matrices to Taylor series, Proc. Edinburgh Math. Soc. (2) 8 (1948), 43–49. MR 27349, DOI 10.1017/S0013091500024780
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2563-2574
- MSC: Primary 30B10; Secondary 40D09, 40G05
- DOI: https://doi.org/10.1090/S0002-9947-1995-1260167-5
- MathSciNet review: 1260167