## Compact composition operators on the Bloch space

HTML articles powered by AMS MathViewer

- by Kevin Madigan and Alec Matheson PDF
- Trans. Amer. Math. Soc.
**347**(1995), 2679-2687 Request permission

## Abstract:

Necessary and sufficient conditions are given for a composition operator ${C_\phi }f = f{\text {o}}\phi$ to be compact on the Bloch space $\mathcal {B}$ and on the little Bloch space ${\mathcal {B}_0}$. Weakly compact composition operators on ${\mathcal {B}_0}$ are shown to be compact. If $\phi \in {\mathcal {B}_0}$ is a conformal mapping of the unit disk $\mathbb {D}$ into itself whose image $\phi (\mathbb {D})$ approaches the unit circle $\mathbb {T}$ only in a finite number of nontangential cusps, then ${C_\phi }$ is compact on ${\mathcal {B}_0}$. On the other hand if there is a point of $\mathbb {T} \cap \phi (\mathbb {D})$ at which $\phi (\mathbb {D})$ does not have a cusp, then ${C_\phi }$ is not compact.## References

- Lars V. Ahlfors,
*Conformal invariants: topics in geometric function theory*, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR**0357743** - J. M. Anderson, J. Clunie, and Ch. Pommerenke,
*On Bloch functions and normal functions*, J. Reine Angew. Math.**270**(1974), 12–37. MR**361090** - Joseph Diestel,
*Sequences and series in Banach spaces*, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR**737004**, DOI 10.1007/978-1-4612-5200-9 - John B. Garnett,
*Applications of harmonic measure*, University of Arkansas Lecture Notes in the Mathematical Sciences, vol. 8, John Wiley & Sons, Inc., New York, 1986. A Wiley-Interscience Publication. MR**888817** - Ch. Pommerenke,
*Boundary behaviour of conformal maps*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR**1217706**, DOI 10.1007/978-3-662-02770-7 - Richard Rochberg,
*Decomposition theorems for Bergman spaces and their applications*, Operators and function theory (Lancaster, 1984) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 153, Reidel, Dordrecht, 1985, pp. 225–277. MR**810448** - Richard Rochberg,
*Interpolation by functions in Bergman spaces*, Michigan Math. J.**29**(1982), no. 2, 229–236. MR**654483** - Joel H. Shapiro,
*Composition operators and classical function theory*, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR**1237406**, DOI 10.1007/978-1-4612-0887-7 - Joel H. Shapiro, Wayne Smith, and David A. Stegenga,
*Geometric models and compactness of composition operators*, J. Funct. Anal.**127**(1995), no. 1, 21–62. MR**1308616**, DOI 10.1006/jfan.1995.1002

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**347**(1995), 2679-2687 - MSC: Primary 47B38; Secondary 30D45, 47B07
- DOI: https://doi.org/10.1090/S0002-9947-1995-1273508-X
- MathSciNet review: 1273508