Compact composition operators on the Bloch space
HTML articles powered by AMS MathViewer
- by Kevin Madigan and Alec Matheson
- Trans. Amer. Math. Soc. 347 (1995), 2679-2687
- DOI: https://doi.org/10.1090/S0002-9947-1995-1273508-X
- PDF | Request permission
Abstract:
Necessary and sufficient conditions are given for a composition operator ${C_\phi }f = f{\text {o}}\phi$ to be compact on the Bloch space $\mathcal {B}$ and on the little Bloch space ${\mathcal {B}_0}$. Weakly compact composition operators on ${\mathcal {B}_0}$ are shown to be compact. If $\phi \in {\mathcal {B}_0}$ is a conformal mapping of the unit disk $\mathbb {D}$ into itself whose image $\phi (\mathbb {D})$ approaches the unit circle $\mathbb {T}$ only in a finite number of nontangential cusps, then ${C_\phi }$ is compact on ${\mathcal {B}_0}$. On the other hand if there is a point of $\mathbb {T} \cap \phi (\mathbb {D})$ at which $\phi (\mathbb {D})$ does not have a cusp, then ${C_\phi }$ is not compact.References
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0357743
- J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12–37. MR 361090
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9
- John B. Garnett, Applications of harmonic measure, University of Arkansas Lecture Notes in the Mathematical Sciences, vol. 8, John Wiley & Sons, Inc., New York, 1986. A Wiley-Interscience Publication. MR 888817
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- Richard Rochberg, Decomposition theorems for Bergman spaces and their applications, Operators and function theory (Lancaster, 1984) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 153, Reidel, Dordrecht, 1985, pp. 225–277. MR 810448
- Richard Rochberg, Interpolation by functions in Bergman spaces, Michigan Math. J. 29 (1982), no. 2, 229–236. MR 654483
- Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406, DOI 10.1007/978-1-4612-0887-7
- Joel H. Shapiro, Wayne Smith, and David A. Stegenga, Geometric models and compactness of composition operators, J. Funct. Anal. 127 (1995), no. 1, 21–62. MR 1308616, DOI 10.1006/jfan.1995.1002
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2679-2687
- MSC: Primary 47B38; Secondary 30D45, 47B07
- DOI: https://doi.org/10.1090/S0002-9947-1995-1273508-X
- MathSciNet review: 1273508