Differential identities
HTML articles powered by AMS MathViewer
- by Bernard Beauzamy and Jérôme Dégot
- Trans. Amer. Math. Soc. 347 (1995), 2607-2619
- DOI: https://doi.org/10.1090/S0002-9947-1995-1277095-1
- PDF | Request permission
Abstract:
We deal here with homogeneous polynomials in many variables and their hypercube representation, introduced in [5]. Associated with this representation there is a norm (Bombieri’s norm) and a scalar product. We investigate differential identities connected with this scalar product. As a corollary, we obtain Bombieri’s inequality (originally proved in [4]), with significant improvements. The hypercube representation of a polynomial was elaborated in order to meet the requests of massively parallel computation on the "Connection Machine" at Etablissement Technique Central de l’Armement; we see here once again (after [3] and [5]) the theoretical power of the model.References
- Richard M. Aron and Josip Globevnik, Interpolation by analytic functions on $c_0$, Math. Proc. Cambridge Philos. Soc. 104 (1988), no. 2, 295–302. MR 948915, DOI 10.1017/S0305004100065476
- Bernard Beauzamy, Introduction to Banach spaces and their geometry, 2nd ed., North-Holland Mathematics Studies, vol. 68, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 86. MR 889253 —, Products of many-variable polynomials: pairs that are maximal in Bombieri’s norm, J. Number Theory (to appear).
- Bernard Beauzamy, Enrico Bombieri, Per Enflo, and Hugh L. Montgomery, Products of polynomials in many variables, J. Number Theory 36 (1990), no. 2, 219–245. MR 1072467, DOI 10.1016/0022-314X(90)90075-3
- Bernard Beauzamy, Jean-Louis Frot, and Christian Millour, Massively parallel computations on many-variable polynomials, Ann. Math. Artificial Intelligence 16 (1996), no. 1-4, 251–283. MR 1389850, DOI 10.1007/BF02127800
- Seán Dineen, Complex analysis in locally convex spaces, Notas de Matemática [Mathematical Notes], vol. 83, North-Holland Publishing Co., Amsterdam-New York, 1981. MR 640093
- Lawrence A. Harris, Bounds on the derivatives of holomorphic functions of vectors, Analyse fonctionnelle et applications (Comptes Rendus Colloq. d’Analyse, Inst. Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972) Actualités Sci. Indust., No. 1367, Hermann, Paris, 1975, pp. 145–163. MR 0477773 Y. Legrandgérard, On some representations of the norm ${[ \cdot ]_2}$, manuscript.
- Morris Marden, Geometry of polynomials, 2nd ed., Mathematical Surveys, No. 3, American Mathematical Society, Providence, R.I., 1966. MR 0225972
- Bruce Reznick, An inequality for products of polynomials, Proc. Amer. Math. Soc. 117 (1993), no. 4, 1063–1073. MR 1119265, DOI 10.1090/S0002-9939-1993-1119265-2
- I. Sarantopoulos, Extremal multilinear forms on Banach spaces, Proc. Amer. Math. Soc. 99 (1987), no. 2, 340–346. MR 870797, DOI 10.1090/S0002-9939-1987-0870797-9
- Ignacio Zalduendo, An estimate for multilinear forms on $l^p$ spaces, Proc. Roy. Irish Acad. Sect. A 93 (1993), no. 1, 137–142. MR 1241848
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2607-2619
- MSC: Primary 05A19; Secondary 11C08, 30C10
- DOI: https://doi.org/10.1090/S0002-9947-1995-1277095-1
- MathSciNet review: 1277095