Variational formulas on Lipschitz domains
HTML articles powered by AMS MathViewer
- by Alan R. Elcrat and Kenneth G. Miller
- Trans. Amer. Math. Soc. 347 (1995), 2669-2678
- DOI: https://doi.org/10.1090/S0002-9947-1995-1285987-2
- PDF | Request permission
Abstract:
A rigorous treatment is given of variational formulas for solutions of certain Dirichlet problems for the Laplace operator on Lipschitz domains under interior variations. In particular we extend well-known variational formulas for the torsional rigidity and for capacity from the class of ${C^1}$ domains to the class of Lipschitz domains. A motivation for this work comes from the use of variational methods in the study of Prandtl-Batchelor flows in fluid mechanics.References
- Hans Wilhelm Alt, Luis A. Caffarelli, and Avner Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc. 282 (1984), no. 2, 431–461. MR 732100, DOI 10.1090/S0002-9947-1984-0732100-6
- G. K. Batchelor, A proposal concerning laminar wakes behind bluff bodies at large Reynolds number, J. Fluid Mech. 1 (1956), 388–398. MR 84310, DOI 10.1017/S0022112056000238
- Luis A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz, Comm. Pure Appl. Math. 42 (1989), no. 1, 55–78. MR 973745, DOI 10.1002/cpa.3160420105
- Russel E. Caflisch, Mathematical analysis of vortex dynamics, Mathematical aspects of vortex dynamics (Leesburg, VA, 1988) SIAM, Philadelphia, PA, 1989, pp. 1–24. MR 1001785 J. Cea, Problems in shape optimal design, Optimization of Distributed Parameter Structures, II (E. Haig and J. Cea, eds.), Sijthoff & Noordhoff, Rockville, MD, 1981, pp. 1005-1047.
- Denise Chenais, On the existence of a solution in a domain identification problem, J. Math. Anal. Appl. 52 (1975), no. 2, 189–219. MR 385666, DOI 10.1016/0022-247X(75)90091-8
- Björn E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), no. 3, 275–288. MR 466593, DOI 10.1007/BF00280445
- P. R. Garabedian and M. Schiffer, Convexity of domain functionals, J. Analyse Math. 2 (1953), 281–368. MR 60117, DOI 10.1007/BF02825640 J. Hadamard, Memoire sur le probleme d’analyse relatif à l’equilibre des plaques élastiques encastrées (1908), Oeuvres de J. Hadamard, C.N.R.S., Paris, 1968.
- David Jerison, Prescribing harmonic measure on convex domains, Invent. Math. 105 (1991), no. 2, 375–400. MR 1115547, DOI 10.1007/BF01232271
- David S. Jerison and Carlos E. Kenig, Boundary value problems on Lipschitz domains, Studies in partial differential equations, MAA Stud. Math., vol. 23, Math. Assoc. America, Washington, DC, 1982, pp. 1–68. MR 716504 —, The inhomogeneous Dirichlet problem in Lipschitz domains, preprint.
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463, DOI 10.1007/978-3-642-65513-5 J. W. Rayleigh, The theory of sound, 2nd ed., Cambridge Univ. Press, 1894-1896.
- J. Simon, Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optim. 2 (1980), no. 7-8, 649–687 (1981). MR 619172, DOI 10.1080/01630563.1980.10120631
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2669-2678
- MSC: Primary 35J20; Secondary 49Q05, 76C99, 76M30
- DOI: https://doi.org/10.1090/S0002-9947-1995-1285987-2
- MathSciNet review: 1285987