Ranges of perturbed maximal monotone and $m$-accretive operators in Banach spaces
HTML articles powered by AMS MathViewer
- by Zhengyuan Guan and Athanassios G. Kartsatos
- Trans. Amer. Math. Soc. 347 (1995), 2403-2435
- DOI: https://doi.org/10.1090/S0002-9947-1995-1297527-2
- PDF | Request permission
Abstract:
A more comprehensive and unified theory is developed for the solvability of the inclusions $S \subset \overline {R(A + B)}$, int $S \subset R(A + B)$, where $A:X \supset D(A) \to {2^Y}$, $B:X \supset D(B) \to Y$ and $S \subset X$. Here, $X$ is a real Banach space and $Y = X$ or $Y = {X^*}$. Mainly, $A$ is either maximal monotone or maccretive, and $B$ is either pseudo-monotone or compact. Cases are also considered where $A$ has compact resolvents and $B$ is continuous and bounded. These results are then used to obtain more concrete sets in the ranges of sums of such operators $A$ and $B$. Various results of Browder, Calvert and Gupta, Gupta, Gupta and Hess, and Kartsatos are improved and/or extended. The methods involve the application of a basic result of Browder, concerning pseudo-monotone perturbation of maximal monotone operators, and the Leray-Schauder degree theory.References
- Viorel Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR 0390843, DOI 10.1007/978-94-010-1537-0 H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies $5$, North-Holland, Amsterdam, 1973. —, Monotone operators, nonlinear semigroups and applications, Proc. Internat. Congress of Mathematicians, Canadian Mathematical Congress, Vancouver, 1974.
- Haïm Brezis and Alain Haraux, Image d’une somme d’opérateurs monotones et applications, Israel J. Math. 23 (1976), no. 2, 165–186. MR 399965, DOI 10.1007/BF02756796
- H. Brézis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 2, 225–326. MR 513090
- Felix E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Nonlinear functional analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R.I., 1976, pp. 1–308. MR 0405188
- Felix E. Browder, On a principle of H. Brézis and its applications, J. Functional Analysis 25 (1977), no. 4, 356–365. MR 0445344, DOI 10.1016/0022-1236(77)90044-1
- Bruce D. Calvert and Chaitan P. Gupta, Nonlinear elliptic boundary value problems in $L^{p}$-spaces and sums of ranges of accretive operators, Nonlinear Anal. 2 (1978), no. 1, 1–26. MR 512651, DOI 10.1016/0362-546X(78)90038-X
- Ioana Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, Mathematics and its Applications, vol. 62, Kluwer Academic Publishers Group, Dordrecht, 1990. MR 1079061, DOI 10.1007/978-94-009-2121-4
- Zhengyuan Guan, Solvability of semilinear equations with compact perturbations of operators of monotone type, Proc. Amer. Math. Soc. 121 (1994), no. 1, 93–102. MR 1174492, DOI 10.1090/S0002-9939-1994-1174492-4 —, Existence of solutions of nonlinear equations involving compact perturbations of monotone operators, Proc. First World Congress of Nonlinear Analysts, Tampa, Florida, 1992, De Gruyter (to appear).
- Zhengyuan Guan and Athanassios G. Kartsatos, Solvability of nonlinear equations with coercivity generated by compact perturbations of $m$-accretive operators in Banach spaces, Houston J. Math. 21 (1995), no. 1, 149–188. MR 1331252
- Chaitan P. Gupta, Sum of ranges of operators and applications, Nonlinear systems and applications (Proc. Internat. Conf., Univ. Texas, Arlington, Tex., 1976) Academic Press, New York, 1977, pp. 547–559. MR 0454758
- Chaitan P. Gupta and Peter Hess, Existence theorems for nonlinear noncoercive operator equations and nonlinear elliptic boundary value problems, J. Differential Equations 22 (1976), no. 2, 305–313. MR 473942, DOI 10.1016/0022-0396(76)90030-9
- Athanassios G. Kartsatos, Mapping theorems involving ranges of sums of nonlinear operators, Nonlinear Anal. 6 (1982), no. 3, 271–278. MR 654318, DOI 10.1016/0362-546X(82)90094-3
- Athanassios G. Kartsatos, Recent results involving compact perturbations and compact resolvents of accretive operators in Banach spaces, World Congress of Nonlinear Analysts ’92, Vol. I–IV (Tampa, FL, 1992) de Gruyter, Berlin, 1996, pp. 2197–2222. MR 1389246
- Athanassios G. Kartsatos, On compact perturbations and compact resolvents of nonlinear $m$-accretive operators in Banach spaces, Proc. Amer. Math. Soc. 119 (1993), no. 4, 1189–1199. MR 1216817, DOI 10.1090/S0002-9939-1993-1216817-6
- Athanassios G. Kartsatos, Sets in the ranges of sums for perturbations of nonlinear $m$-accretive operators in Banach spaces, Proc. Amer. Math. Soc. 123 (1995), no. 1, 145–156. MR 1213863, DOI 10.1090/S0002-9939-1995-1213863-5
- Athanassios G. Kartsatos, Sets in the ranges of nonlinear accretive operators in Banach spaces, Studia Math. 114 (1995), no. 3, 261–273. MR 1338831, DOI 10.4064/sm-114-3-261-273
- Nobuyuki Kenmochi, Pseudomonotone operators and nonlinear elliptic boundary value problems, J. Math. Soc. Japan 27 (1975), 121–149. MR 372419, DOI 10.2969/jmsj/02710121
- V. Lakshmikantham and S. Leela, Nonlinear differential equations in abstract spaces, International Series in Nonlinear Mathematics: Theory, Methods and Applications, vol. 2, Pergamon Press, Oxford-New York, 1981. MR 616449
- Mitio Nagumo, Degree of mapping in convex linear topological spaces, Amer. J. Math. 73 (1951), 497–511. MR 42697, DOI 10.2307/2372304 D. Pascali and Sburlan, Nonlinear mappings of monotone type, Sijthoff and Noordhoof, Bucharest, 1978.
- Jan Prüss, A characterization of uniform convexity and applications to accretive operators, Hiroshima Math. J. 11 (1981), no. 2, 229–234. MR 620534
- Eberhard Zeidler, Nonlinear functional analysis and its applications. II/B, Springer-Verlag, New York, 1990. Nonlinear monotone operators; Translated from the German by the author and Leo F. Boron. MR 1033498, DOI 10.1007/978-1-4612-0985-0
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2403-2435
- MSC: Primary 47H05; Secondary 47H06, 47H11, 47H15
- DOI: https://doi.org/10.1090/S0002-9947-1995-1297527-2
- MathSciNet review: 1297527