Heegaard splittings of Seifert fibered spaces with boundary
HTML articles powered by AMS MathViewer
- by Jennifer Schultens
- Trans. Amer. Math. Soc. 347 (1995), 2533-2552
- DOI: https://doi.org/10.1090/S0002-9947-1995-1297537-5
- PDF | Request permission
Abstract:
We give the classification theorem for Heegaard splittings of fiberwise orientable Seifert fibered spaces with nonempty boundary. A thin position argument yields a reducibility result which, by induction, shows that all Heegaard splittings of such manifolds are vertical in the sense of Lustig-Moriah. Algebraic arguments allow a classification of the vertical Heegaard splittings.References
- M. Boileau, D.J. Collins, and H. Zieschang, Genus $2$ Heegaard decompositions of small Seifert manifolds, IHES/M/89/27
- Michel Boileau and Jean-Pierre Otal, Groupe des difféotopies de certaines variétés de Seifert, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 1, 19–22 (French, with English summary). MR 849619
- A. J. Casson and C. McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987), no. 3, 275–283. MR 918537, DOI 10.1016/0166-8641(87)90092-7
- David Gabai, Foliations and the topology of $3$-manifolds. II, J. Differential Geom. 26 (1987), no. 3, 461–478. MR 910017
- C. McA. Gordon and J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), no. 2, 371–415. MR 965210, DOI 10.1090/S0894-0347-1989-0965210-7
- Martin Lustig, Nielsen equivalence and simple-homotopy type, Proc. London Math. Soc. (3) 62 (1991), no. 3, 537–562. MR 1095232, DOI 10.1112/plms/s3-62.3.537
- Martin Lustig and Yoav Moriah, Nielsen equivalence in Fuchsian groups and Seifert fibered spaces, Topology 30 (1991), no. 2, 191–204. MR 1098913, DOI 10.1016/0040-9383(91)90005-O
- Yoav Moriah, Heegaard splittings of Seifert fibered spaces, Invent. Math. 91 (1988), no. 3, 465–481. MR 928492, DOI 10.1007/BF01388781
- J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells. MR 0163331, DOI 10.1515/9781400881802
- John Milnor, Lectures on the $h$-cobordism theorem, Princeton University Press, Princeton, N.J., 1965. Notes by L. Siebenmann and J. Sondow. MR 0190942, DOI 10.1515/9781400878055
- Martin Scharlemann and Abigail Thompson, Heegaard splittings of $(\textrm {surface})\times I$ are standard, Math. Ann. 295 (1993), no. 3, 549–564. MR 1204837, DOI 10.1007/BF01444902
- Jennifer Schultens, The classification of Heegaard splittings for (compact orientable surface)$\,\times \, S^1$, Proc. London Math. Soc. (3) 67 (1993), no. 2, 425–448. MR 1226608, DOI 10.1112/plms/s3-67.2.425
- Peter Scott, The geometries of $3$-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401–487. MR 705527, DOI 10.1112/blms/15.5.401
- H. Seifert, Topologie Dreidimensionaler Gefaserter Räume, Acta Math. 60 (1933), no. 1, 147–238 (German). MR 1555366, DOI 10.1007/BF02398271
- Heiner Zieschang, Elmar Vogt, and Hans-Dieter Coldewey, Surfaces and planar discontinuous groups, Lecture Notes in Mathematics, vol. 835, Springer, Berlin, 1980. Translated from the German by John Stillwell. MR 606743, DOI 10.1007/BFb0089692
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2533-2552
- MSC: Primary 57N10
- DOI: https://doi.org/10.1090/S0002-9947-1995-1297537-5
- MathSciNet review: 1297537