On the number of solutions of a third-order boundary value problem
HTML articles powered by AMS MathViewer
- by Eva Rovderová
- Trans. Amer. Math. Soc. 347 (1995), 3079-3092
- DOI: https://doi.org/10.1090/S0002-9947-1995-1243172-4
- PDF | Request permission
Abstract:
This paper deals with the number of solutions of the third-order boundary value problem $y''’ = f(t,y,y’,y'')$, $y(0) = {A_0}$, $y’(0) = {A_1}$, $y''(T) = B$. This number of solutions is investigated in connection with the number of zeros of a solution for the corresponding variational problem.References
- S. Fučík and A. Kufner, Nonlinear differential equations, SNTL, Prague, 1978. (Czech)
- Michal Greguš and Milan Gera, Some results in the theory of a third-order linear differential equation, Ann. Polon. Math. 42 (1983), 93–102. MR 728072, DOI 10.4064/ap-42-1-93-102 M. Greguš, M. Švec, and V. Šeda, Ordinary differential equations, Alfa, Bratislava, 1985. (Slovak) M. Greguš, Linear differential equation of the third order, Veda, Bratislava, 1981. (Slovak)
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- M. A. Krasnosel′skiĭ, Polozhitel′nye resheniya operatornykh uravneniĭ, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1962 (Russian). MR 0145331 B. N. Petrov, V. Yu. Rutkovskii, and S. D. Zemlyakov, Adaptive coordinate-parameter control of flying apparatuses, control in cosmic space, vol. 1, Nauka, Moscow, 1972. (Russian) V. Rocard, Dynamique générale des vibrations, Masson, Paris, 1949. (French) E. Rovderová, The number of solutions of two point nonlinear boundary value problems, Dissertation Thesis, 1993. E. Sadyrbaev, About the number of solutions of the two point boundary value problem, Latvian Math. Ann. 32 (1988), 37-41. (Russian) N. I. Vasiliev and Ju. A. Klokov, The elements of theory of boundary value problems for ordinary differential equations, Zinatne, Riga, 1978. (Russian)
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 3079-3092
- MSC: Primary 34B15
- DOI: https://doi.org/10.1090/S0002-9947-1995-1243172-4
- MathSciNet review: 1243172