## A right countably sigma-CS ring with ACC or DCC on projective principal right ideals is left Artinian and QF-$3$

HTML articles powered by AMS MathViewer

- by Dinh Van Huynh PDF
- Trans. Amer. Math. Soc.
**347**(1995), 3131-3139 Request permission

## Abstract:

A module $M$ is called a CS module if every submodule of $M$ is essential in a direct summand of $M$. A ring $R$ is said to be right (countably) $\Sigma$-CS if any direct sum of (countably many) copies of the right $R$-module $R$ is CS. It is shown that for a right countably $\Sigma$-CS ring $R$ the following are equivalent: (i) $R$ is right $\Sigma$-CS, (ii) $R$ has ACC or DCC on projective principal right ideals, (iii) $R$ has finite right uniform dimension and ACC or DCC holds on projective uniform principal right ideals of $R$, (iv) $R$ is semiperfect. From results of Oshiro [12], [13], under these conditions, $R$ is left artinian and QF-$3$. As a consequence, a ring $R$ is quasi-Frobenius if it is right countably $\Sigma$-CS, semiperfect and no nonzero projective right ideals are contained in its Jacobson radical.## References

- Frank W. Anderson and Kent R. Fuller,
*Rings and categories of modules*, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York-Heidelberg, 1974. MR**0417223**, DOI 10.1007/978-1-4684-9913-1 - Efraim P. Armendariz and Jae Keol Park,
*Self-injective rings with restricted chain conditions*, Arch. Math. (Basel)**58**(1992), no. 1, 24–33. MR**1139382**, DOI 10.1007/BF01198638 - John Clark and Dinh van Huynh,
*When is a self-injective semiperfect ring quasi-Frobenius?*, J. Algebra**165**(1994), no. 3, 531–542. MR**1275918**, DOI 10.1006/jabr.1994.1128 - Nguyen V. Dung and Patrick F. Smith,
*$\Sigma$-$\textrm {CS}$-modules*, Comm. Algebra**22**(1994), no. 1, 83–93. MR**1255671**, DOI 10.1080/00927879408824832 - Carl Faith,
*Rings with ascending condition on annihilators*, Nagoya Math. J.**27**(1966), 179–191. MR**193107**, DOI 10.1017/S0027763000011983 - Carl Faith,
*Algebra. II*, Grundlehren der Mathematischen Wissenschaften, No. 191, Springer-Verlag, Berlin-New York, 1976. Ring theory. MR**0427349**, DOI 10.1007/978-3-642-65321-6 - K. R. Goodearl and R. B. Warfield Jr.,
*An introduction to noncommutative Noetherian rings*, London Mathematical Society Student Texts, vol. 16, Cambridge University Press, Cambridge, 1989. MR**1020298** - David Jonah,
*Rings with the minimum condition for principal right ideals have the maximum condition for principal left ideals*, Math. Z.**113**(1970), 106–112. MR**260779**, DOI 10.1007/BF01141096 - Friedrich Kasch,
*Moduln und Ringe*, Mathematische Leitfäden, B. G. Teubner, Stuttgart, 1977. MR**0429963**, DOI 10.1007/978-3-663-05703-1 - Toyonori Kato,
*Self-injective rings*, Tohoku Math. J. (2)**19**(1967), 485–495. MR**224648**, DOI 10.2748/tmj/1178243253 - Saad H. Mohamed and Bruno J. Müller,
*Continuous and discrete modules*, London Mathematical Society Lecture Note Series, vol. 147, Cambridge University Press, Cambridge, 1990. MR**1084376**, DOI 10.1017/CBO9780511600692 - Kiyoichi Oshiro,
*Lifting modules, extending modules and their applications to QF-rings*, Hokkaido Math. J.**13**(1984), no. 3, 310–338. MR**764267**, DOI 10.14492/hokmj/1381757705 - Kiyoichi Oshiro,
*On Harada rings. I, II*, Math. J. Okayama Univ.**31**(1989), 161–178, 179–188. MR**1043359** - B. L. Osofsky,
*A generalization of quasi-Frobenius rings*, J. Algebra**4**(1966), 373–387. MR**204463**, DOI 10.1016/0021-8693(66)90028-7 - Phan Dân,
*Right perfect rings with the extending property on finitely generated free modules*, Osaka J. Math.**26**(1989), no. 2, 265–273. MR**1017585** - Hiroyuki Tachikawa,
*Quasi-Frobenius rings and generalizations. $\textrm {QF}-3$ and $\textrm {QF}-1$ rings*, Lecture Notes in Mathematics, Vol. 351, Springer-Verlag, Berlin-New York, 1973. Notes by Claus Michael Ringel. MR**0349740**, DOI 10.1007/BFb0059997 - Robert Wisbauer,
*Foundations of module and ring theory*, Revised and translated from the 1988 German edition, Algebra, Logic and Applications, vol. 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991. A handbook for study and research. MR**1144522**

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**347**(1995), 3131-3139 - MSC: Primary 16L30; Secondary 16L60, 16P70
- DOI: https://doi.org/10.1090/S0002-9947-1995-1273501-7
- MathSciNet review: 1273501