A right countably sigma-CS ring with ACC or DCC on projective principal right ideals is left Artinian and QF-$3$
HTML articles powered by AMS MathViewer
- by Dinh Van Huynh PDF
- Trans. Amer. Math. Soc. 347 (1995), 3131-3139 Request permission
Abstract:
A module $M$ is called a CS module if every submodule of $M$ is essential in a direct summand of $M$. A ring $R$ is said to be right (countably) $\Sigma$-CS if any direct sum of (countably many) copies of the right $R$-module $R$ is CS. It is shown that for a right countably $\Sigma$-CS ring $R$ the following are equivalent: (i) $R$ is right $\Sigma$-CS, (ii) $R$ has ACC or DCC on projective principal right ideals, (iii) $R$ has finite right uniform dimension and ACC or DCC holds on projective uniform principal right ideals of $R$, (iv) $R$ is semiperfect. From results of Oshiro [12], [13], under these conditions, $R$ is left artinian and QF-$3$. As a consequence, a ring $R$ is quasi-Frobenius if it is right countably $\Sigma$-CS, semiperfect and no nonzero projective right ideals are contained in its Jacobson radical.References
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York-Heidelberg, 1974. MR 0417223, DOI 10.1007/978-1-4684-9913-1
- Efraim P. Armendariz and Jae Keol Park, Self-injective rings with restricted chain conditions, Arch. Math. (Basel) 58 (1992), no. 1, 24–33. MR 1139382, DOI 10.1007/BF01198638
- John Clark and Dinh van Huynh, When is a self-injective semiperfect ring quasi-Frobenius?, J. Algebra 165 (1994), no. 3, 531–542. MR 1275918, DOI 10.1006/jabr.1994.1128
- Nguyen V. Dung and Patrick F. Smith, $\Sigma$-$\textrm {CS}$-modules, Comm. Algebra 22 (1994), no. 1, 83–93. MR 1255671, DOI 10.1080/00927879408824832
- Carl Faith, Rings with ascending condition on annihilators, Nagoya Math. J. 27 (1966), 179–191. MR 193107, DOI 10.1017/S0027763000011983
- Carl Faith, Algebra. II, Grundlehren der Mathematischen Wissenschaften, No. 191, Springer-Verlag, Berlin-New York, 1976. Ring theory. MR 0427349, DOI 10.1007/978-3-642-65321-6
- K. R. Goodearl and R. B. Warfield Jr., An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, vol. 16, Cambridge University Press, Cambridge, 1989. MR 1020298
- David Jonah, Rings with the minimum condition for principal right ideals have the maximum condition for principal left ideals, Math. Z. 113 (1970), 106–112. MR 260779, DOI 10.1007/BF01141096
- Friedrich Kasch, Moduln und Ringe, Mathematische Leitfäden, B. G. Teubner, Stuttgart, 1977. MR 0429963, DOI 10.1007/978-3-663-05703-1
- Toyonori Kato, Self-injective rings, Tohoku Math. J. (2) 19 (1967), 485–495. MR 224648, DOI 10.2748/tmj/1178243253
- Saad H. Mohamed and Bruno J. Müller, Continuous and discrete modules, London Mathematical Society Lecture Note Series, vol. 147, Cambridge University Press, Cambridge, 1990. MR 1084376, DOI 10.1017/CBO9780511600692
- Kiyoichi Oshiro, Lifting modules, extending modules and their applications to QF-rings, Hokkaido Math. J. 13 (1984), no. 3, 310–338. MR 764267, DOI 10.14492/hokmj/1381757705
- Kiyoichi Oshiro, On Harada rings. I, II, Math. J. Okayama Univ. 31 (1989), 161–178, 179–188. MR 1043359
- B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra 4 (1966), 373–387. MR 204463, DOI 10.1016/0021-8693(66)90028-7
- Phan Dân, Right perfect rings with the extending property on finitely generated free modules, Osaka J. Math. 26 (1989), no. 2, 265–273. MR 1017585
- Hiroyuki Tachikawa, Quasi-Frobenius rings and generalizations. $\textrm {QF}-3$ and $\textrm {QF}-1$ rings, Lecture Notes in Mathematics, Vol. 351, Springer-Verlag, Berlin-New York, 1973. Notes by Claus Michael Ringel. MR 0349740, DOI 10.1007/BFb0059997
- Robert Wisbauer, Foundations of module and ring theory, Revised and translated from the 1988 German edition, Algebra, Logic and Applications, vol. 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991. A handbook for study and research. MR 1144522
Additional Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 3131-3139
- MSC: Primary 16L30; Secondary 16L60, 16P70
- DOI: https://doi.org/10.1090/S0002-9947-1995-1273501-7
- MathSciNet review: 1273501