STABLE RANGE ONE FOR RINGS WITH MANY IDEMPOTENTS

VICTOR P. CAMILLO AND HUA-PING YU

Abstract. An associative ring R is said to have stable range 1 if for any $a, b \in R$ satisfying $aR + bR = R$, there exists $y \in R$ such that $a + by$ is a unit. The purpose of this note is to prove the following facts. Theorem 3: An exchange ring R has stable range 1 if and only if every regular element of R is unit-regular. Theorem 5: If R is a strongly π-regular ring with the property that all powers of every regular element are regular, then R has stable range 1. The latter generalizes a recent result of Goodearl and Menal [5].

Let R be an associative ring with identity. R is said to have stable range 1 if for any $a, b \in R$ satisfying $aR + bR = R$, there exists $y \in R$ such that $a + by$ is a unit. This definition is left-right symmetric by Vaserstein [9, Theorem 2]. Furthermore, by a theorem of Kaplansky, all one-sided units are two-sided in rings having stable range 1 (cf. Vaserstein [10, Theorem 2.6]). It is well known that a (von Neumann) regular ring R has stable range 1 if and only if R is unit-regular (see, for example, Goodearl [4, Proposition 4.12]).

Call a ring R strongly π-regular if for every element $a \in R$ there exist a number n (depending on a) and an element $x \in R$ such that $a^n = a^{n+1}x$. This is in fact a two-sided condition [3]. It is an open question whether all strongly π-regular rings have stable range 1. Goodearl and Menal [5] proved that strongly π-regular rings are unit-regular and, hence, have stable range 1 (Theorem 5.8, p. 278).

In this note we first extend the above result for von Neumann regular rings to a larger class of rings, which includes all strongly π-regular rings, π-regular rings, von Neumann regular rings, and algebraic algebras. As an application of this, we prove that a strongly π-regular ring R has stable range 1 if powers of every regular element are regular. The latter is a generalization of the above-mentioned result of Goodearl and Menal for strongly π-regular regular rings. As one can see from our proofs, rings in these classes have a large supply of idempotents.

Throughout, R stands for an associative ring with identity and $J(R)$ for the Jacobson radical of R. Modules are unitary right R-modules except otherwise specified. For other undefined terms, readers are referred to [4].

Let M_R be a right R-module. Following Crawley and Jonsson [2], M_R is said to have the exchange property if for every module A_R and any two
decompositions of A_R

$$A_R = M' \oplus N = \bigoplus_{i \in I} A_i$$

where $M'_R \cong M_R$, there exist submodules $A'_i \subseteq A_i$ such that

$$A = M' \oplus \left(\bigoplus_{i \in I} A'_i \right).$$

M_R is said to have the finite exchange property if the above condition is satisfied whenever the index set I is finite. Many familiar classes of modules have the exchange property or the finite exchange property, see Zimmermann-Huisgen and Zimmermann [12] for a list of these classes of modules.

Warfield [8] introduced the class of exchange rings. He called a ring R an exchange ring if R_R has the exchange property above and proved that this definition is left-right symmetric. The class of exchange rings is quite large. Call a ring R semiregular (semi-π-regular, semi-strongly π-regular) if $R/J(R)$ is regular (π-regular , strongly π-regular) and idempotents can be lifted modulo $J(R)$. It is easy to verify that the following classes of rings (in the order of containments) are all contained in the class of exchange rings: (1) local rings; (2) semiperfect rings; (3) semiregular rings; (4) semistrongly π-regular rings; (5) semi-π-regular rings (see, for example, Stock [7, p. 440]).

The following characterizations of the finite exchange property for projective modules were given by Nicholson [6, Proposition 2.9].

Lemma 1 (Nicholson). The following conditions are equivalent for a projective module P:

1. P has the finite exchange property.
2. If $P = M_1 + M_2 + \cdots + M_n$ where M_i are submodules, there is a decomposition $P = P_1 \oplus P_2 \oplus \cdots \oplus P_n$ with $P_i \subseteq M_i$ for each i.
3. If $P = M + N$ where M and N are submodules, there exists a summand P_1 of P such that $P_1 \subseteq M$ and $P = P_1 + N$.

The original definition of stable range 1 for an arbitrary ring R is equivalent to the condition that for any $a, x, b \in R$ satisfying $ax + b = 1$, there exists $y \in R$ such that $a + by$ is a unit in R. The next lemma says that, for exchange rings, the element b in the latter condition can be further restricted to idempotents.

Lemma 2. Let R be an exchange ring, then the following conditions are equivalent:

1. R has stable range 1.
2. For any $a \in R$, $e^2 = e \in R$, if $ax + e = 1$ for some $x \in R$, then there exists $y \in R$ such that $a + ey = u$ is a unit.

Proof. (1) \Rightarrow (2): Trivial. (2) \Rightarrow (1): Assume that $aR + bR = R$. R is exchange, there exists an idempotent $e^2 = e \in bR$ such that $(1-e)R \oplus eR = R$ where $(1-e)R \subseteq aR$ and $eR \subseteq bR$, by Lemma 1. So we have $ax + e = 1$ for some $x \in R$. By assumption, there exists $y \in R$ such that $a + ey = u$ is a unit; hence, $a + bry = u$ is a unit where $e = br$.

Recall that for a regular ring R, R has stable range 1 if and only if R is unit-regular. We now extend this to exchange rings.
Theorem 3. An exchange rings R has stable range 1 if and only if every regular element of R is unit-regular in R.

Proof. \Rightarrow: Let $axa = a$; then $ax + (1 - ax) = 1$. By the assumption on R, there exists $y \in R$ such that $a + (1 - ax)y = u$ is a unit in R. Multiplying both sides of the latter equality by ax on the left, we have that $axa = a = axu$, so $au^{-1}a = a$, and a is unit-regular.

\Leftarrow: By Lemma 2, we need only show that if $ax + e = 1$ with $e^2 = e$, there exists an element $y \in R$ such that $a + ey$ is a unit.

We first show that, without loss of generality, we may assume $axa = a$. In fact, if $axa \neq a$, put $f = ax$ and $r = fa - a$; then $rx = 0$. Letting $a' = a + r$, we have $a'x = ax + rx = ax + 0 = ax = f$, $a'xa' = fa' = fa + fr = fa + 0 = a + r = a'$. To see that $fr = 0$, notice that $f = ax = 1 - e$ is an idempotent. Now if $a' + ey$ is a unit for some $y \in R$ and $fr = 0$ implies $r \in (1-f)R = eR$, we have

$$a' + ey = a + r + ey = a + es + ey = a + e(s + y)$$

is a unit.

So we can assume that $ax + e = 1$, where $e^2 = e$ and $axa = a$. Notice that $axa = a$ if and only if $ea = 0$. Since we assume that every regular element is unit-regular, there exists a unit $u \in R$ such that $aua = a$. Then we have

$$1 - e = ax = (aua)x = (au)(ax) = au(1 - e).$$

$$(au - e)^2 = (au - e)(au - e) = auau - aue - eau + e = au - aue - 0 + e = au(1 - e) + e = 1.$$

So $au - e = v$ is a unit, therefore $a - eu^{-1} = vu^{-1}$ is a unit. \square

For some other equivalent characterizations of stable range 1 for exchange rings, see Yu [11, Theorem 9].

While the question of whether all strongly π-regular rings have stable range 1 remains open, we now can reduce this to a unit-regularity problem.

Corollary 4. A strongly π-regular ring R has stable range 1 if and only if every regular element of R is unit-regular in R. \square

Corollary 4 should be compared with an analogous result of Goodearl and Menal [5, Theorem 6.1], which says that a strongly π-regular ring R has stable range 1 if and only if every nilpotent regular element of each corner of R is unit-regular in that corner. By a corner of a ring R, they mean any (nonunital) subring eRe where e is an idempotent in R. While it is true that an element $x \in eRe$ is regular in eRe if and only if it is regular in R, the same is not true for unit-regularity.

One of the known cases where strongly π-regular rings have stable range 1 was Theorem 5.8 of Goodearl and Menal [5]: a strongly π-regular regular ring has stable range 1. As an application of our Theorem 3, we now extend this to the following:

Theorem 5. Let R be a strongly π-regular ring. If all powers of every regular element are regular, then R has stable range 1.

The proof we are going to give is a modification of Goodearl and Menal's proof in [5]. In order to make our paper self-contained, we present here a complete proof, although a portion of it is just a verbatim adoption of their argument.
Lemma 6 (Azumaya, Dischinger). For every element \(x \in R \) of a strongly \(\pi \)-regular ring \(R \), there exist \(a \in R \) and an integer \(n \geq 1 \) such that \(xa = ax \) and \(x^n = ax^{n+1} = x^{n+1}a \). \(\square \)

Proof of Theorem 5. Let \(x \in R \) be a regular element with \(xyx = x \). It suffices to prove, by Corollary 4, that \(x \) is unit-regular.

Set \(K_i = r.ann(x^i) \) for all \(i = 0, 1, 2, \ldots \).

Claim 1. There exists an integer \(n \geq 1 \) such that \(xR + K_n = R \) and \(x^nR \cap K_1 = 0 \).

In fact, by Lemma 6, there exist an integer \(n > 1 \) and \(a \in R \) such that \(ax = xa \) and \(x^n = ax^{n+1} = x^{n+1}a \). Pick any \(r \in R \), we have \(x^n r = x^{n+1}ar \) and \(x^n(r - xar) = 0 \); thus \(r - xar \in K_n \) and \(r \in xR + K_n \). Therefore, \(xR + K_n = R \).

Since \(x^n = ax^{n+1} \), it is clear that \(K_n = K_{n+1} \). If \(x^n d \in x^n R \cap K_1 \), then \(xx^n d = 0 \) and \(d \in K_{n+1} = K_n \), so \(x^n d = 0 \), i.e., \(x^n R \cap K_1 = 0 \).

Claim 2. \(xR + K_i \) are direct summands of \(R_R \) for all \(i \geq 1 \).

Since \(x^i \) is regular for all \(i \geq 2 \) by our assumption on \(R \), we may assume \(x^iy_i = x^i \) for some \(y_i \in R \) for \(i \geq 2 \). Then \(K_i = (1 - y_i x^i)R \). It is easy to check that

\[
xR + (1 - y_i x^i)R = y_i x^ixR + (1 - y_i x^i)R.
\]

We check below that the element \(y_i x^ix \) is actually von Neumann regular:

\[
y_i x^ix \cdot y_i x^{i+1} \cdot y_i x^ix = y_i x^ix y_i x^{i+1} x^i x = y_i x^i x.
\]

Put \(e_i = y_i x^ix y_i x^{i+1} \) and \(f_i = 1 - y_i x^i \), then \(e_i f_i = f_i e_i = 0 \). We see that \(e_i \) and \(f_i \) are orthogonal idempotents, hence \(e_i + f_i \) is an idempotent. But \(y_i x^ixR = e_i R \), so \(xR + K_i = e_i R + f_i R = (e_i + f_i) R \) is a direct summand of \(R_R \).

Recall that we assume \(xyx = x \), so \(xR + K_1 \) is a direct summand of \(R_R \) for the same reason.

Claim 3. \(x^i R \cap K_1 \) are all direct summands of \(R_R \) for all \(i \geq 1 \).

First, we show \(x^i R \cap K_1 = x^i K_{i+1} \). Since \(x^i K_{i+1} \subset x^i R \) and \(x^i K_{i+1} \subset K_1 \), \(x^i K_{i+1} \subset x^i R \cap K_1 \); on the other hand, pick any \(x^ir \in x^i R \cap K_1 \), \(xx^ir = x^{i+1}r = 0 \), \(r \in K_{i+1} \), so \(x^ir \in x^i K_{i+1} \), \(x^i R \cap K_1 \subset x^i K_{i+1} \).

Second, recall that we assume \(x^iy_i x^i = x^i \), so that \(K_{i+1} = (1 - y_{i+1} x^{i+1}) R \), and we see that \(x^i R \cap K_1 = x^i K_{i+1} = x^i (1 - y_{i+1} x^{i+1}) R \). We check below that \(x^i (1 - y_{i+1} x^{i+1}) \) is von Neumann regular:

\[
x^i (1 - y_{i+1} x^{i+1}) y_i x^i (1 - y_{i+1} x^{i+1}) = (x^i - x^iy_{i+1} x^{i+1}) y_i x^i (1 - y_{i+1} x^{i+1})
\]

\[
= (1 - x^i y_{i+1} x) x^iy_i x^i (1 - y_{i+1} x^{i+1}) = (1 - x^i y_{i+1} x) x^i (1 - y_{i+1} x^{i+1})
\]

\[
= (x^i - x^i y_{i+1} x^{i+1}) (1 - y_{i+1} x^{i+1}) = x^i (1 - y_{i+1} x^{i+1}) (1 - y_{i+1} x^{i+1})
\]

\[
= x^i (1 - y_{i+1} x^{i+1}).
\]

Therefore \(x^i R \cap K_1 = x^i K_{i+1} \) is a direct summand of \(R_R \).

Inasmuch as \(xyx = x \), \(xR \cap K_1 = xK_2 \) is a direct summand of \(R_R \).
Claim 4. \((xR + K_m)/xR \cong K_1/x^mR \cap K_1\) for all \(m\).

Every right ideal involved here is a direct summand of \(R_R\) by Claims 2 and 3. We have the ascending and descending chains of direct summands

\[
xR \subset xR + K_1 \subset xR + K_2 \subset \ldots \subset xR + K_m,
\]

\[
K_1^{\oplus} \supset xR \cap K_1^{\oplus} \supset x^2R \cap K_1^{\oplus} \supset \ldots \supset x^mR \cap K_1
\]

which give us the decompositions

\[
(xR + K_m)/xR \cong \bigoplus_{i=0}^{m-1} (xR + K_{i+1})/(xR + K_i),
\]

\[
K_1/(x^mR \cap K_1) \cong \bigoplus_{i=0}^{m-1} (x^iR \cap K_1)/(x^{i+1}R \cap K_1).
\]

So if we can show that

\[
(xR + K_{i+1})/(xR + K_i) \cong (x^iR \cap K_1)/(x^{i+1}R \cap K_1)
\]

for all \(i\), we are done.

First we note that

\[
(xR + K_{i+1})/(xR + K_i) = (xR + K_i + K_{i+1})/(xR + K_i)
\]

\[
\cong K_{i+1}/[(xR + K_i) \cap K_{i+1}] = K_{i+1}/[(xR \cap K_{i+1}) + K_i].
\]

As \(x^iK_{i+1} \subseteq x^iR \cap K_1\) and \(x^i[(xR \cap K_{i+1}) + K_i] \subseteq x^{i+1}R \cap K_1\), left multiplication by \(x^i\) gives a module homomorphism

\[
f : K_{i+1}/[(xR \cap K_{i+1}) + K_i] \rightarrow (x^iR \cap K_1)/(x^{i+1}R \cap K_1).
\]

The map \(f\) is epic: Pick any \(r \in x^iR \cap K_1\), \(r = x^ia\) for some \(a \in R\). But \(x^{i+1}a = xr = 0\); then \(a \in K_{i+1}\). So \(f(a) = r\).

The map \(f\) is monic: Suppose \(z \in K_{i+1}\) and \(x^i z \in x^{i+1}R \cap K_1\); then we have \(x^i z = x^{i+1}b\) for some \(b \in R\) and \(x^{i+1}b = x(x^i z) = 0\), whence \(xb \in K_{i+1} \cap xR\).

Since \(x^i(z - xb) = 0\), \(z - xb \in K_i\); thus \(z \in (xR \cap K_{i+1}) + K_i\), i.e., \(f\) is monic.

We have proved that \(f\) is an isomorphism.

Claim 5. \(x\) is unit-regular, i.e., there exists a unit \(u \in R\) such that \(xux = x\).

It follows from Claims 1 and 4 that

\[(xR + K_n)/xR = R/xR \cong K_1/x^nR \cap K_1 = K_1/0 = K_1.
\]

It is assumed that \(x\) is a unit in \(R\); hence

\[R = yxR \oplus K_1 = xR \oplus (1 - xy)R.
\]

So \(K_1 \cong (1 - xy)R\). Denote this isomorphism by \(\alpha\). Also, the restriction of the left multiplication by \(x\) gives an isomorphism \(\beta\) from \(yxR\) to \(xR\). Define \(u \in \text{end}(R_R) = R\) to be the direct sum of \(\alpha\) and \(\beta^{-1}\); it is easy to check that \(u\) is a unit in \(R\) and \(xux = x\). \(\square\)

The above proof actually proves the following more general statement:
Theorem 7. For an exchange ring R, if powers of every von Neumann regular element are von Neumann regular and for every von Neumann regular element $x \in R$ there exists an integer $n \geq 1$ such that $x^n R = x^{n+1} R$ and $R x^n = R x^{n+1}$, then R has stable range one.

Proof. $x^n R = x^{n+1} R$ implies $x R + K_n = R$ and $R x^n = R x^{n+1}$ implies $K_n = K_{n+1}$; hence $x^n R \cap K_1 = 0$. So Claim 1 is valid. Claims 2 and 3 use only the property that powers of every regular element are regular and so are still valid in this case. Claims 4 and 5 have nothing to do with the strongly π-regularity of R and therefore are also valid here. Finally, the conclusion follows from Theorem 3. \[\square \]

We conclude this note by giving two examples. One shows that our generalization of Goodearl and Menal's result on strongly π-regular regular rings to Theorem 5 is nontrivial, the other shows that the converse of Theorem 5 is false.

Example 8. Let F be any field, $R = \left(\begin{array}{cc} F & F \\ 0 & F \end{array} \right)$.

R is obviously Artinian and hence strongly π-regular. One checks that an element $x \in R$ is von Neumann regular in R if and only if x is not nilpotent. So powers of every regular element in R are regular. But $J(R) = \left(\begin{array}{c} 0 \\ F \end{array} \right) \neq 0$, therefore R is not regular. This shows that our generalization of Goodearl and Menal's result on regular strongly π-regular rings to Theorem 5 is nontrivial.

Example 9. Let R be the 2×2 matrix ring over $F[x]/(x^2)$, where F is a field.

Clearly, R is a finite-dimensional algebra and hence strongly π-regular. Of course, R has stable range 1. But not all the powers of every regular element are regular in R. Take $a = \left(\begin{array}{cc} 1 & 0 \\ 0 & x \end{array} \right)$ and $u = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)$; it is easy to see that $a u a = a$. But $a^2 = \left(\begin{array}{cc} 0 & 1 \\ 1 & x \end{array} \right)$ is not regular. So the condition that powers of every regular element are regular is sufficient but not necessary for strongly π-regular rings to have stable range 1.

ACKNOWLEDGMENT

Example 9 was communicated to the authors by Professor K. R. Goodearl. We thank him for this example.

REFERENCES

Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242

E-mail address: vcamillo@math.uiowa.edu

hpyu@math.uiowa.edu