Stable range one for rings with many idempotents
HTML articles powered by AMS MathViewer
- by Victor P. Camillo and Hua-Ping Yu
- Trans. Amer. Math. Soc. 347 (1995), 3141-3147
- DOI: https://doi.org/10.1090/S0002-9947-1995-1277100-2
- PDF | Request permission
Abstract:
An associative ring $R$ is said to have stable range $1$ if for any $a$, $b \in R$ satisfying $aR + bR = R$, there exists $y \in R$ such that $a + by$ by is a unit. The purpose of this note is to prove the following facts. Theorem $3$: An exchange ring $R$ has stable range $1$ if and only if every regular element of $R$ is unit-regular. Theorem $5$: If $R$ is a strongly $\pi$-regular ring with the property that all powers of every regular element are regular, then $R$ has stable range $1$. The latter generalizes a recent result of Goodearl and Menal [$5$].References
- Gorô Azumaya, Strongly $\pi$-regular rings, J. Fac. Sci. Hokkaido Univ. Ser. I. 13 (1954), 34–39. MR 0067864
- Peter Crawley and Bjarni Jónsson, Refinements for infinite direct decompositions of algebraic systems, Pacific J. Math. 14 (1964), 797–855. MR 169806, DOI 10.2140/pjm.1964.14.797
- Friedrich Dischinger, Sur les anneaux fortement $\pi$-réguliers, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 8, Aii, A571–A573 (French, with English summary). MR 422330
- K. R. Goodearl, von Neumann regular rings, Monographs and Studies in Mathematics, vol. 4, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. MR 533669
- K. R. Goodearl and P. Menal, Stable range one for rings with many units, J. Pure Appl. Algebra 54 (1988), no. 2-3, 261–287. MR 963548, DOI 10.1016/0022-4049(88)90034-5
- W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269–278. MR 439876, DOI 10.1090/S0002-9947-1977-0439876-2
- Josef Stock, On rings whose projective modules have the exchange property, J. Algebra 103 (1986), no. 2, 437–453. MR 864422, DOI 10.1016/0021-8693(86)90145-6
- R. B. Warfield Jr., Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31–36. MR 332893, DOI 10.1007/BF01419573
- L. N. Vaseršteĭn, The stable range of rings and the dimension of topological spaces, Funkcional. Anal. i Priložen. 5 (1971), no. 2, 17–27 (Russian). MR 0284476
- L. N. Vaserstein, Bass’s first stable range condition, Proceedings of the Luminy conference on algebraic $K$-theory (Luminy, 1983), 1984, pp. 319–330. MR 772066, DOI 10.1016/0022-4049(84)90044-6
- Hua-Ping Yu, Stable range one for exchange rings, J. Pure Appl. Algebra 98 (1995), no. 1, 105–109. MR 1317002, DOI 10.1016/0022-4049(95)90029-2
- Birge Zimmermann-Huisgen and Wolfgang Zimmermann, Classes of modules with the exchange property, J. Algebra 88 (1984), no. 2, 416–434. MR 747525, DOI 10.1016/0021-8693(84)90075-9
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 3141-3147
- MSC: Primary 16D70; Secondary 16U50, 19B10
- DOI: https://doi.org/10.1090/S0002-9947-1995-1277100-2
- MathSciNet review: 1277100