Hadamard convexity and multiplicity and location of zeros
HTML articles powered by AMS MathViewer
- by Faruk F. Abi-Khuzam
- Trans. Amer. Math. Soc. 347 (1995), 3043-3051
- DOI: https://doi.org/10.1090/S0002-9947-1995-1285968-9
- PDF | Request permission
Abstract:
We consider certain questions arising from a paper of Hayman concerning quantitative versions of the Hadamard three-circle theorem for entire functions. If $b(r)$ denotes the second derivative of $\log M(r)$ with respect to $\log r$, the principal contributions of this work are (i) a characterization of those entire $f$ with nonnegative Maclaurin coefficients for which $\lim \sup b(r) = \frac {1} {4}$ and (ii) some exploration of the relationship between multiple zeros of $f$ and the growth of $b(r)$.References
- Faruk F. Abi-Khuzam, Maximum modulus convexity and the location of zeros of an entire function, Proc. Amer. Math. Soc. 106 (1989), no. 4, 1063–1068. MR 972225, DOI 10.1090/S0002-9939-1989-0972225-3
- V. S. Boĭčuk and A. A. Gol′dberg, On the three lines theorem, Mat. Zametki 15 (1974), 45–53 (Russian). MR 344465
- W. K. Hayman, Note on Hadamard’s convexity theorem, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 210–213. MR 0252639 B. Kjelleberg, The convexity theorem of Hadamard-Hayman, Proc. Sympos. Math., Stockholm (June 1973, Royal Institute of Technology), pp. 87-114. —, Review of $1$, Zentralblatt für Math., 1990.
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 3043-3051
- MSC: Primary 30D20; Secondary 30D15, 30D35
- DOI: https://doi.org/10.1090/S0002-9947-1995-1285968-9
- MathSciNet review: 1285968