Left annihilators characterized by GPIs
HTML articles powered by AMS MathViewer
- by Tsiu Kwen Lee
- Trans. Amer. Math. Soc. 347 (1995), 3159-3165
- DOI: https://doi.org/10.1090/S0002-9947-1995-1286000-3
- PDF | Request permission
Abstract:
Let $R$ be a semiprime ring with extended centroid $C$, $U$ the right Utumi quotient ring of $R$, $S$ a subring of $U$ containing $R$ and ${\rho _1}$, ${\rho _2}$ two right ideals of $R$. In the paper we show that ${l_S}({\rho _1}) = {l_S}({\rho _2})$ if and only if ${\rho _1}$ and ${\rho _2}$ satisfy the same generalized polynomial identities (GPIs) with coefficients in $SC$, where ${l_S}({\rho _i})$ denotes the left annihilator of ${\rho _i}$ in $S$. As a consequence of the result, if $\rho$ is a right ideal of $R$ such that ${l_R}(\rho ) = 0$, then $\rho$ and $U$ satisfy the same GPIs with coefficients in the two-sided Utumi quotient ring of $R$.References
- K. I. Beĭdar, Quotient rings of semiprime rings, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 5 (1978), 36–43 (Russian, with English summary). MR 516019
- K. I. Beĭdar, Rings with generalized identities. III, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 4 (1978), 66–73 (Russian, with English summary). MR 510966
- Chen-Lian Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723–728. MR 947646, DOI 10.1090/S0002-9939-1988-0947646-4
- Chen-Lian Chuang, Differential identities with automorphisms and antiautomorphisms. I, J. Algebra 149 (1992), no. 2, 371–404. MR 1172436, DOI 10.1016/0021-8693(92)90023-F
- Theodore S. Erickson, Wallace S. Martindale 3rd, and J. Marshall Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), no. 1, 49–63. MR 382379, DOI 10.2140/pjm.1975.60.49
- Carl Faith, Lectures on injective modules and quotient rings, Lecture Notes in Mathematics, No. 49, Springer-Verlag, Berlin-New York, 1967. MR 0227206, DOI 10.1007/BFb0074319
- Nathan Jacobson, Structure of rings, Revised edition, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, Providence, R.I., 1964. MR 0222106
- Wallace S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584. MR 238897, DOI 10.1016/0021-8693(69)90029-5
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 3159-3165
- MSC: Primary 16R50; Secondary 16N60
- DOI: https://doi.org/10.1090/S0002-9947-1995-1286000-3
- MathSciNet review: 1286000