## Induced $C^ *$-algebras and Landstad duality for twisted coactions

HTML articles powered by AMS MathViewer

- by John C. Quigg and Iain Raeburn PDF
- Trans. Amer. Math. Soc.
**347**(1995), 2885-2915 Request permission

## Abstract:

Suppose $N$ is a closed normal subgroup of a locally compact group $G$. A coaction $:A \to M(A \otimes {C^ * }(N))$ of $N$ on a ${C^ * }$-algebra $A$ can be inflated to a coaction $\delta$ of $G$ on $A$, and the crossed product $A{ \times _\delta }G$ is then isomorphic to the induced ${C^ * }$-algebra $\text {Ind}_N^G A{\times _\epsilon }N$. We prove this and a natural generalization in which $A{ \times _\epsilon }N$ is replaced by a twisted crossed product $A{ \times _{G/N}}G$; in case $G$ is abelian, we recover a theorem of Olesen and Pedersen. We then use this to extend the Landstad duality of the first author to twisted crossed products, and give several applications. In particular, we prove that if \[ 1 \to N \to G \to G/N \to 1\] is topologically trivial, but not necessarily split as a group extension, then every twisted crossed product $A{ \times _{G/N}}G$ is isomorphic to a crossed product of the form $A \times N$.## References

- Charles A. Akemann, Gert K. Pedersen, and Jun Tomiyama,
*Multipliers of $C^*$-algebras*, J. Functional Analysis**13**(1973), 277–301. MR**0470685**, DOI 10.1016/0022-1236(73)90036-0 - Siegfried Echterhoff,
*On induced covariant systems*, Proc. Amer. Math. Soc.**108**(1990), no. 3, 703–706. MR**994776**, DOI 10.1090/S0002-9939-1990-0994776-6 - Pierre Eymard,
*L’algèbre de Fourier d’un groupe localement compact*, Bull. Soc. Math. France**92**(1964), 181–236 (French). MR**228628**, DOI 10.24033/bsmf.1607 - James Glimm,
*Families of induced representations*, Pacific J. Math.**12**(1962), 885–911. MR**146297**, DOI 10.2140/pjm.1962.12.885 - Elliot C. Gootman and Aldo J. Lazar,
*Applications of noncommutative duality to crossed product $C^*$-algebras determined by an action or coaction*, Proc. London Math. Soc. (3)**59**(1989), no. 3, 593–624. MR**1014872**, DOI 10.1112/plms/s3-59.3.593 - Philip Green,
*The local structure of twisted covariance algebras*, Acta Math.**140**(1978), no. 3-4, 191–250. MR**493349**, DOI 10.1007/BF02392308 - Sh\B{o} Imai and Hiroshi Takai,
*On a duality for $C^{\ast }$-crossed products by a locally compact group*, J. Math. Soc. Japan**30**(1978), no. 3, 495–504. MR**500719**, DOI 10.2969/jmsj/03030495 - Valéria B. de Magalh aes Iório,
*Hopf $C^{\ast }$-algebras and locally compact groups*, Pacific J. Math.**87**(1980), no. 1, 75–96. MR**590869**, DOI 10.2140/pjm.1980.87.75 - Yoshikazu Katayama,
*Takesaki’s duality for a nondegenerate co-action*, Math. Scand.**55**(1984), no. 1, 141–151. MR**769030**, DOI 10.7146/math.scand.a-12072 - Magnus B. Landstad,
*Duality for dual covariance algebras*, Comm. Math. Phys.**52**(1977), no. 2, 191–202. MR**450456**, DOI 10.1007/BF01625783
—, - Magnus B. Landstad,
*Duality theory for covariant systems*, Trans. Amer. Math. Soc.**248**(1979), no. 2, 223–267. MR**522262**, DOI 10.1090/S0002-9947-1979-0522262-6 - M. B. Landstad, J. Phillips, I. Raeburn, and C. E. Sutherland,
*Representations of crossed products by coactions and principal bundles*, Trans. Amer. Math. Soc.**299**(1987), no. 2, 747–784. MR**869232**, DOI 10.1090/S0002-9947-1987-0869232-0 - Kevin Mansfield,
*Induced representations of crossed products by coactions*, J. Funct. Anal.**97**(1991), no. 1, 112–161. MR**1105657**, DOI 10.1016/0022-1236(91)90018-Z - Yoshiomi Nakagami and Masamichi Takesaki,
*Duality for crossed products of von Neumann algebras*, Lecture Notes in Mathematics, vol. 731, Springer, Berlin, 1979. MR**546058**, DOI 10.1007/BFb0069742 - Dorte Olesen and Gert K. Pedersen,
*Applications of the Connes spectrum to $C^{\ast }$-dynamical systems*, J. Functional Analysis**30**(1978), no. 2, 179–197. MR**515224**, DOI 10.1016/0022-1236(78)90069-1 - Dorte Olesen and Gert K. Pedersen,
*Applications of the Connes spectrum to $C^{\ast }$-dynamical systems*, J. Functional Analysis**30**(1978), no. 2, 179–197. MR**515224**, DOI 10.1016/0022-1236(78)90069-1 - Dorte Olesen and Gert K. Pedersen,
*Partially inner $C^\ast$-dynamical systems*, J. Funct. Anal.**66**(1986), no. 2, 262–281. MR**832992**, DOI 10.1016/0022-1236(86)90074-1 - Judith A. Packer and Iain Raeburn,
*Twisted crossed products of $C^*$-algebras. II*, Math. Ann.**287**(1990), no. 4, 595–612. MR**1066817**, DOI 10.1007/BF01446916 - Gert K. Pedersen,
*Dynamical systems and crossed products*, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 271–283. MR**679707** - John Phillips and Iain Raeburn,
*Twisted crossed products by coactions*, J. Austral. Math. Soc. Ser. A**56**(1994), no. 3, 320–344. MR**1271525**, DOI 10.1017/S1446788700035539 - John C. Quigg,
*Full $C^*$-crossed product duality*, J. Austral. Math. Soc. Ser. A**50**(1991), no. 1, 34–52. MR**1094057**, DOI 10.1017/S1446788700032535 - John C. Quigg,
*Landstad duality for $C^*$-coactions*, Math. Scand.**71**(1992), no. 2, 277–294. MR**1212711**, DOI 10.7146/math.scand.a-12429 - John C. Quigg and J. Spielberg,
*Regularity and hyporegularity in $C^*$-dynamical systems*, Houston J. Math.**18**(1992), no. 1, 139–152. MR**1159445** - Iain Raeburn,
*On crossed products and Takai duality*, Proc. Edinburgh Math. Soc. (2)**31**(1988), no. 2, 321–330. MR**989764**, DOI 10.1017/S0013091500003436 - Iain Raeburn,
*Induced $C^*$-algebras and a symmetric imprimitivity theorem*, Math. Ann.**280**(1988), no. 3, 369–387. MR**936317**, DOI 10.1007/BF01456331 - Iain Raeburn,
*A duality theorem for crossed products by nonabelian groups*, Miniconference on harmonic analysis and operator algebras (Canberra, 1987) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 15, Austral. Nat. Univ., Canberra, 1987, pp. 214–227. MR**935605** - Iain Raeburn,
*On crossed products by coactions and their representation theory*, Proc. London Math. Soc. (3)**64**(1992), no. 3, 625–652. MR**1153000**, DOI 10.1112/plms/s3-64.3.625 - Iain Raeburn and Jonathan Rosenberg,
*Crossed products of continuous-trace $C^\ast$-algebras by smooth actions*, Trans. Amer. Math. Soc.**305**(1988), no. 1, 1–45. MR**920145**, DOI 10.1090/S0002-9947-1988-0920145-6 - Iain Raeburn and Dana P. Williams,
*Pull-backs of $C^\ast$-algebras and crossed products by certain diagonal actions*, Trans. Amer. Math. Soc.**287**(1985), no. 2, 755–777. MR**768739**, DOI 10.1090/S0002-9947-1985-0768739-2 - Hiroshi Takai,
*On a duality for crossed products of $C^{\ast }$-algebras*, J. Functional Analysis**19**(1975), 25–39. MR**0365160**, DOI 10.1016/0022-1236(75)90004-x - Jean-Michel Vallin,
*$C^\ast$-algèbres de Hopf et $C^\ast$-algèbres de Kac*, Proc. London Math. Soc. (3)**50**(1985), no. 1, 131–174 (French). MR**765372**, DOI 10.1112/plms/s3-50.1.131 - S. L. Woronowicz,
*Pseudospaces, pseudogroups and Pontriagin duality*, Mathematical problems in theoretical physics (Proc. Internat. Conf. Math. Phys., Lausanne, 1979) Lecture Notes in Phys., vol. 116, Springer, Berlin-New York, 1980, pp. 407–412. MR**582650**

*Duality for dual*${C^*}$

*-covariance algebras over compact groups*, unpublished manuscript, 1978.

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**347**(1995), 2885-2915 - MSC: Primary 46L55; Secondary 46L40
- DOI: https://doi.org/10.1090/S0002-9947-1995-1297536-3
- MathSciNet review: 1297536