When do the upper Kuratowski topology (homeomorphically, Scott topology) and the co-compact topology coincide?
HTML articles powered by AMS MathViewer
- by Szymon Dolecki, Gabriele H. Greco and Alojzy Lechicki
- Trans. Amer. Math. Soc. 347 (1995), 2869-2884
- DOI: https://doi.org/10.1090/S0002-9947-1995-1303118-7
- PDF | Request permission
Abstract:
A topology is called consonant if the corresponding upper Kuratowski topology on closed sets coincides with the co-compact topology, equivalently if each Scott open set is compactly generated. It is proved that Čechcomplete topologies are consonant and that consonance is not preserved by passage to ${G_\delta }$-sets, quotient maps and finite products. However, in the class of the regular spaces, the product of a consonant topology and of a locally compact topology is consonant. The latter fact enables us to characterize the topologies generated by some $\Gamma$-convergences.References
- Richard F. Arens, A topology for spaces of transformations, Ann. of Math. (2) 47 (1946), 480–495. MR 17525, DOI 10.2307/1969087
- Richard Arens and James Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951), 5–31. MR 43447, DOI 10.2140/pjm.1951.1.5 E. Čech, Topological spaces, Academia, Prague, 1959.
- G. Choquet, Convergences, Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N.S.) 23 (1948), 57–112. MR 0025716
- B. J. Day and G. M. Kelly, On topological quotient maps preserved by pullbacks or products, Proc. Cambridge Philos. Soc. 67 (1970), 553–558. MR 254817, DOI 10.1017/s0305004100045850
- Ennio De Giorgi and Tullio Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 58 (1975), no. 6, 842–850 (Italian). MR 448194
- Ennio De Giorgi, Generalized limits in calculus of variations, Topics in functional analysis, 1980–81, Scuola Norm. Sup. Pisa, Pisa, 1981, pp. 117–148. Quaderni. MR 671756
- Szymon Dolecki and Gabriele H. Greco, Cyrtologies of convergences. I, Math. Nachr. 126 (1986), 327–348. MR 846584, DOI 10.1002/mana.19861260122
- Szymon Dolecki and Gabriele H. Greco, Topologically maximal pretopologies, Studia Math. 77 (1984), no. 3, 265–281. MR 745283, DOI 10.4064/sm-77-3-265-281
- Szymon Dolecki, Gabriele H. Greco, and Alojzy Lechicki, Compactoid and compact filters, Pacific J. Math. 117 (1985), no. 1, 69–98. MR 777438, DOI 10.2140/pjm.1985.117.69
- Szymon Dolecki, Gabriele H. Greco, and Alojzy Lechicki, Sur la topologie de la convergence supérieure de Kuratowski, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 12, 923–926 (French, with English summary). MR 1111329
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- J. M. G. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472–476. MR 139135, DOI 10.1090/S0002-9939-1962-0139135-6
- Karl H. Hofmann and Jimmie D. Lawson, The spectral theory of distributive continuous lattices, Trans. Amer. Math. Soc. 246 (1978), 285–310. MR 515540, DOI 10.1090/S0002-9947-1978-0515540-7 S. P. Franklin, Solution of problem 5468 (S. W. Williams), Amer. Math. Monthly 74 (1967), 207.
- John R. Isbell, Meet-continuous lattices, Symposia Mathematica, Vol. XVI, Academic Press, London, 1975, pp. 41–54. (Convegno sui Gruppi Topologici e Gruppi di Lie, INDAM, Rome, 1974),. MR 0405339
- Eva Lowen-Colebunders, On the convergence of closed and compact sets, Pacific J. Math. 108 (1983), no. 1, 133–140. MR 709705, DOI 10.2140/pjm.1983.108.133
- Dana Scott, Continuous lattices, Toposes, algebraic geometry and logic (Conf., Dalhousie Univ., Halifax, N.S., 1971) Lecture Notes in Math., Vol. 274, Springer, Berlin, 1972, pp. 97–136. MR 0404073
- Flemming Topsøe, Compactness in spaces of measures, Studia Math. 36 (1970), 195–222. (errata insert). MR 268347, DOI 10.4064/sm-36-3-195-212 A. S. Ward, Problem in "Topology and its applications" (Proc. Herceg., Nov. 1968), Belgrade, 1969, p. 352.
- Peter Wilker, Adjoint product and hom functors in general topology, Pacific J. Math. 34 (1970), 269–283. MR 270329, DOI 10.2140/pjm.1970.34.269
- R. A. Wijsman, Convergence of sequences of convex sets, cones and functions. II, Trans. Amer. Math. Soc. 123 (1966), 32–45. MR 196599, DOI 10.1090/S0002-9947-1966-0196599-8
- Gerald Beer, Topologies on closed and closed convex sets, Mathematics and its Applications, vol. 268, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1269778, DOI 10.1007/978-94-015-8149-3
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2869-2884
- MSC: Primary 54B20; Secondary 06B30, 54A20
- DOI: https://doi.org/10.1090/S0002-9947-1995-1303118-7
- MathSciNet review: 1303118