The index of determinacy for measures and the $l^ 2$-norm of orthonormal polynomials
HTML articles powered by AMS MathViewer
- by Christian Berg and Antonio J. Duran
- Trans. Amer. Math. Soc. 347 (1995), 2795-2811
- DOI: https://doi.org/10.1090/S0002-9947-1995-1308001-9
- PDF | Request permission
Abstract:
For determinate measures $\mu$ having moments of every order we define and study an index of determinacy which checks the stability of determinacy under multiplication by even powers of $|t - z|$ for $z$ a complex number. Using this index of determinacy, we solve the problem of determining for which $z \in \mathbb {C}$ the sequence ${(p_n^{(m)}(z))_n}(m \in \mathbb {N})$ belongs to ${\ell ^2}$, where ${({p_n})_n}$ is the sequence of orthonormal polynomials associated with the measure $\mu$.References
- N. I. Akhiezer, The classical moment problem, Oliver and Boyd, Edinburgh, 1965.
- Ch. Berg and J. P. R. Christensen, Density questions in the classical theory of moments, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 3, vi, 99–114 (English, with French summary). MR 638619
- Christian Berg and Henrik L. Pedersen, On the order and type of the entire functions associated with an indeterminate Hamburger moment problem, Ark. Mat. 32 (1994), no. 1, 1–11. MR 1277917, DOI 10.1007/BF02559520
- Christian Berg and Marco Thill, Rotation invariant moment problems, Acta Math. 167 (1991), no. 3-4, 207–227. MR 1120603, DOI 10.1007/BF02392450
- Christian Berg and Marco Thill, A density index for the Stieltjes moment problem, Orthogonal polynomials and their applications (Erice, 1990) IMACS Ann. Comput. Appl. Math., vol. 9, Baltzer, Basel, 1991, pp. 185–188. MR 1270229
- Ralph Philip Boas Jr., Entire functions, Academic Press, Inc., New York, 1954. MR 0068627
- Henri Buchwalter and Gilles Cassier, La paramétrisation de Nevanlinna dans le problème des moments de Hamburger, Exposition. Math. 2 (1984), no. 2, 155–178 (French, with English summary). MR 783130
- Antonio J. Duran, On orthogonal polynomials with respect to a positive definite matrix of measures, Canad. J. Math. 47 (1995), no. 1, 88–112. MR 1319691, DOI 10.4153/CJM-1995-005-8 M. Riesz, Sur le problème des moments et le théorème de Parseval correspondant, Acta Litt. Acad. Sci. Szeged 1 (1923), 209-225.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2795-2811
- MSC: Primary 30E05; Secondary 30D15, 42C05, 44A60
- DOI: https://doi.org/10.1090/S0002-9947-1995-1308001-9
- MathSciNet review: 1308001