The structure of the reverse Hölder classes
HTML articles powered by AMS MathViewer
- by David Cruz-Uribe and C. J. Neugebauer
- Trans. Amer. Math. Soc. 347 (1995), 2941-2960
- DOI: https://doi.org/10.1090/S0002-9947-1995-1308005-6
- PDF | Request permission
Abstract:
In this paper we study the structure of the class of functions $(R{H_s})$ which satisfy the reverse Hölder inequality with exponent $s > 1$. To do so we introduce a new operator, the minimal operator, which is analogous to the Hardy-Littlewood maximal operator, and a new class of functions, $(R{H_\infty })$, which plays the same role for $(R{H_s})$ that the class $({A_1})$ does for the $({A_p})$ classes.References
- Kenneth F. Andersen and Wo-Sang Young, On the reverse weak type inequality for the Hardy maximal function and the weighted classes $L(\textrm {log}\,L)^{k}$, Pacific J. Math. 112 (1984), no. 2, 257–264. MR 743983, DOI 10.2140/pjm.1984.112.257
- Colin Bennett, Ronald A. DeVore, and Robert Sharpley, Weak-$L^{\infty }$ and BMO, Ann. of Math. (2) 113 (1981), no. 3, 601–611. MR 621018, DOI 10.2307/2006999
- Filippo Chiarenza and Michele Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. (7) 7 (1987), no. 3-4, 273–279 (1988). MR 985999
- David Cruz-Uribe, Piecewise monotonic doubling measures, Rocky Mountain J. Math. 26 (1996), no. 2, 545–583. MR 1406495, DOI 10.1216/rmjm/1181072073 —, The class $L\log L$ with weights, The Madison Symposium on Complex Analysis, Contemp. Math., vol. 137, Amer. Math. Soc., Providence, RI, 1992.
- David Cruz-Uribe, C. J. Neugebauer, and V. Olesen, Norm inequalities for the minimal and maximal operator, and differentiation of the integral, Publ. Mat. 41 (1997), no. 2, 577–604. MR 1485505, DOI 10.5565/PUBLMAT_{4}1297_{2}0
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), no. 2, 249–254. MR 565349, DOI 10.1090/S0002-9939-1980-0565349-8
- Bruno Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations, Trans. Amer. Math. Soc. 327 (1991), no. 1, 125–158. MR 1040042, DOI 10.1090/S0002-9947-1991-1040042-8
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- F. W. Gehring, The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. MR 402038, DOI 10.1007/BF02392268
- Mariano Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, vol. 105, Princeton University Press, Princeton, NJ, 1983. MR 717034
- M. Giaquinta and G. Modica, Regularity results for some classes of higher order nonlinear elliptic systems, J. Reine Angew. Math. 311(312) (1979), 145–169. MR 549962
- R. Johnson, Changes of variable and $A_p$ weights, Harmonic analysis and partial differential equations (Boca Raton, FL, 1988) Contemp. Math., vol. 107, Amer. Math. Soc., Providence, RI, 1990, pp. 93–99. MR 1066472, DOI 10.1090/conm/107/1066472
- R. Johnson and C. J. Neugebauer, Homeomorphisms preserving $A_p$, Rev. Mat. Iberoamericana 3 (1987), no. 2, 249–273. MR 990859, DOI 10.4171/RMI/50 —, Change of variable results for $({A_p})$-and reverse Hölder $R{H_r}$-classes, Trans. Amer. Math. Soc. 328 (1991), 639-666. J. L. Journé, Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderon, Lecture Notes in Math., vol. 994, Springer-Verlag, New York, 1983.
- Benjamin Muckenhoupt, Weighted reverse weak type inequalities for the Hardy-Littlewood maximal function, Pacific J. Math. 117 (1985), no. 2, 371–377. MR 779926, DOI 10.2140/pjm.1985.117.371
- Eric T. Sawyer, Weighted norm inequalities for fractional maximal operators, 1980 Seminar on Harmonic Analysis (Montreal, Que., 1980) CMS Conf. Proc., vol. 1, Amer. Math. Soc., Providence, R.I., 1981, pp. 283–309. MR 670111
- Edward W. Stredulinsky, Weighted inequalities and degenerate elliptic partial differential equations, Lecture Notes in Mathematics, vol. 1074, Springer-Verlag, Berlin, 1984. MR 757718, DOI 10.1007/BFb0101268
- Jan-Olov Strömberg and Alberto Torchinsky, Weighted Hardy spaces, Lecture Notes in Mathematics, vol. 1381, Springer-Verlag, Berlin, 1989. MR 1011673, DOI 10.1007/BFb0091154
- Jan-Olov Strömberg and Richard L. Wheeden, Fractional integrals on weighted $H^p$ and $L^p$ spaces, Trans. Amer. Math. Soc. 287 (1985), no. 1, 293–321. MR 766221, DOI 10.1090/S0002-9947-1985-0766221-X
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2941-2960
- MSC: Primary 42B25; Secondary 46E15
- DOI: https://doi.org/10.1090/S0002-9947-1995-1308005-6
- MathSciNet review: 1308005