Orbits of rank one and parallel mean curvature
HTML articles powered by AMS MathViewer
- by Carlos Olmos
- Trans. Amer. Math. Soc. 347 (1995), 2927-2939
- DOI: https://doi.org/10.1090/S0002-9947-1995-1308018-4
- PDF | Request permission
Abstract:
Let ${M^n}(n \geqslant 2)$ be a (extrinsic) homogeneous irreducible full submanifold of Euclidean space with $rank(M) = k \geqslant 1$ (i.e., it admits $k \geqslant 1$ locally defined, linearly independent parallel normal vector fields). We prove that $M$ must be contained in a sphere. This result toghether with previous work of the author about homogeneous submanifolds of higher rank imply, in particular, the following theorem: A homogeneous irreducible submanifold of Euclidean space with parallel mean curvature vector is either minimal, or minimal in a sphere, or an orbit of the isotropy representation of a simple symmetric space.References
- Jiri Dadok, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc. 288 (1985), no. 1, 125–137. MR 773051, DOI 10.1090/S0002-9947-1985-0773051-1
- Joseph Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geometry 5 (1971), 333–340. MR 288701
- Dirk Ferus, Symmetric submanifolds of Euclidean space, Math. Ann. 247 (1980), no. 1, 81–93. MR 565140, DOI 10.1007/BF01359868
- E. Heintze, C. Olmos, and G. Thorbergsson, Submanifolds with constant principal curvatures and normal holonomy groups, Internat. J. Math. 2 (1991), no. 2, 167–175. MR 1094702, DOI 10.1142/S0129167X91000107
- John Douglas Moore, Isometric immersions of riemannian products, J. Differential Geometry 5 (1971), 159–168. MR 307128
- Carlos Olmos, The normal holonomy group, Proc. Amer. Math. Soc. 110 (1990), no. 3, 813–818. MR 1023346, DOI 10.1090/S0002-9939-1990-1023346-9
- Carlos Olmos, Isoparametric submanifolds and their homogeneous structures, J. Differential Geom. 38 (1993), no. 2, 225–234. MR 1237484
- Carlos Olmos, Homogeneous submanifolds of higher rank and parallel mean curvature, J. Differential Geom. 39 (1994), no. 3, 605–627. MR 1274132
- Richard S. Palais and Chuu-Lian Terng, Critical point theory and submanifold geometry, Lecture Notes in Mathematics, vol. 1353, Springer-Verlag, Berlin, 1988. MR 972503, DOI 10.1007/BFb0087442
- Wolf Strübing, Isoparametric submanifolds, Geom. Dedicata 20 (1986), no. 3, 367–387. MR 845431, DOI 10.1007/BF00149586
- Chuu-Lian Terng, Isoparametric submanifolds and their Coxeter groups, J. Differential Geom. 21 (1985), no. 1, 79–107. MR 806704
- Gudlaugur Thorbergsson, Isoparametric foliations and their buildings, Ann. of Math. (2) 133 (1991), no. 2, 429–446. MR 1097244, DOI 10.2307/2944343
- Jorge Vargas, A symmetric space of noncompact type has no equivariant isometric immersions into the Euclidean space, Proc. Amer. Math. Soc. 81 (1981), no. 1, 149–150. MR 589158, DOI 10.1090/S0002-9939-1981-0589158-X A. West, private communication.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2927-2939
- MSC: Primary 53C30; Secondary 53C42
- DOI: https://doi.org/10.1090/S0002-9947-1995-1308018-4
- MathSciNet review: 1308018