On the $K$-theory of crystallographic groups
HTML articles powered by AMS MathViewer
- by Georgios Tsapogas
- Trans. Amer. Math. Soc. 347 (1995), 2781-2794
- DOI: https://doi.org/10.1090/S0002-9947-1995-1308025-1
- PDF | Request permission
Abstract:
For any crystallographic group $\Gamma$ we show that the groups ${K_i}(\Gamma )$ are isomorphic, via the forget control map, to the controlled $K$-groups ${K_i}{(\Gamma )_c}$, for all $i \leqslant 1$ and for an appropriate choice of the control map. By using this result and under a mild hypothesis on the crystallographic group $\Gamma$, it is proved that ${K_i}(\Gamma ) = 0$ for all $i \leqslant - 2$ and ${N^j}{K_i}(\Gamma ) = 0$ for all $i \leqslant - 1$ and $j > 0$.References
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- Glen E. Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics, No. 34, Springer-Verlag, Berlin-New York, 1967. MR 0214062, DOI 10.1007/BFb0082690
- David W. Carter, Localization in lower algebraic $K$-theory, Comm. Algebra 8 (1980), no. 7, 603–622. MR 561543, DOI 10.1080/00927878008822478
- David W. Carter, Lower $K$-theory of finite groups, Comm. Algebra 8 (1980), no. 20, 1927–1937. MR 590500, DOI 10.1080/00927878008822554
- T. A. Chapman, Controlled simple homotopy theory and applications, Lecture Notes in Mathematics, vol. 1009, Springer-Verlag, Berlin, 1983. MR 711363, DOI 10.1007/BFb0066066
- Marshall M. Cohen, A course in simple-homotopy theory, Graduate Texts in Mathematics, Vol. 10, Springer-Verlag, New York-Berlin, 1973. MR 0362320, DOI 10.1007/978-1-4684-9372-6
- Marshall M. Cohen, Simplicial structures and transverse cellularity, Ann. of Math. (2) 85 (1967), 218–245. MR 210143, DOI 10.2307/1970440
- Frank Connolly and Tadeusz Koźniewski, Rigidity and crystallographic groups. I, Invent. Math. 99 (1990), no. 1, 25–48. MR 1029389, DOI 10.1007/BF01234410
- Andreas W. M. Dress, Induction and structure theorems for orthogonal representations of finite groups, Ann. of Math. (2) 102 (1975), no. 2, 291–325. MR 387392, DOI 10.2307/1971033
- David Epstein and Michael Shub, Expanding endomorphisms of flat manifolds, Topology 7 (1968), 139–141. MR 227996, DOI 10.1016/0040-9383(68)90022-0
- F. T. Farrell and W. C. Hsiang, The topological-Euclidean space form problem, Invent. Math. 45 (1978), no. 2, 181–192. MR 482771, DOI 10.1007/BF01390272
- F. T. Farrell and W. C. Hsiang, The Whitehead group of poly-(finite or cyclic) groups, J. London Math. Soc. (2) 24 (1981), no. 2, 308–324. MR 631942, DOI 10.1112/jlms/s2-24.2.308
- F. T. Farrell and W. C. Hsiang, Topological characterization of flat and almost flat Riemannian manifolds $M^{n}$ $(n\not =3,\,4)$, Amer. J. Math. 105 (1983), no. 3, 641–672. MR 704219, DOI 10.2307/2374318
- Daniel R. Farkas, Crystallographic groups and their mathematics, Rocky Mountain J. Math. 11 (1981), no. 4, 511–551. MR 639438, DOI 10.1216/RMJ-1981-11-4-511
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
- John Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430–436. MR 77932, DOI 10.2307/1970012
- J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426. MR 196736, DOI 10.1090/S0002-9904-1966-11484-2
- Frank Quinn, Ends of maps. II, Invent. Math. 68 (1982), no. 3, 353–424. MR 669423, DOI 10.1007/BF01389410 —, Algebraic $K$-theory of poly-(finite or cyclic) groups, Bull. Amer. Math. Soc. (N.S.) 12 (1985). —, Geometric algebra and ends of maps, Lecture Notes of CBMS Conference Lectures at the University of Notre Dame.
- Andrew Ranicki, Lower $K$- and $L$-theory, London Mathematical Society Lecture Note Series, vol. 178, Cambridge University Press, Cambridge, 1992. MR 1208729, DOI 10.1017/CBO9780511526329
- I. Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003. Corrected reprint of the 1975 original; With a foreword by M. J. Taylor. MR 1972204
- Ralph Stöcker, Whiteheadgruppe topologischer Räume, Invent. Math. 9 (1969/70), 271–278 (German). MR 267570, DOI 10.1007/BF01425481
- R. G. Swan, Algebraic $K$-theory, Lecture Notes in Mathematics, No. 76, Springer-Verlag, Berlin-New York, 1968. MR 0245634, DOI 10.1007/BFb0080281
- Richard G. Swan, $K$-theory of finite groups and orders, Lecture Notes in Mathematics, Vol. 149, Springer-Verlag, Berlin-New York, 1970. MR 0308195, DOI 10.1007/BFb0059150 G. Tsapogas, $K$-theory of crystallographic groups, Ph.D. Dissertation, University of Notre Dame, 1989.
- Masayuki Yamasaki, $L$-groups of crystallographic groups, Invent. Math. 88 (1987), no. 3, 571–602. MR 884801, DOI 10.1007/BF01391832
- Joseph A. Wolf, Spaces of constant curvature, McGraw-Hill Book Co., New York-London-Sydney, 1967. MR 0217740
- F. T. Farrell and L. E. Jones, Isomorphism conjectures in algebraic $K$-theory, J. Amer. Math. Soc. 6 (1993), no. 2, 249–297. MR 1179537, DOI 10.1090/S0894-0347-1993-1179537-0
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2781-2794
- MSC: Primary 19D35; Secondary 20H15, 57Q10
- DOI: https://doi.org/10.1090/S0002-9947-1995-1308025-1
- MathSciNet review: 1308025