The structure of MFD shock waves for rectilinear motion in some models of plasma
Author:
Mahmoud Hesaaraki
Journal:
Trans. Amer. Math. Soc. 347 (1995), 3423-3452
MSC:
Primary 35L67; Secondary 34C99, 35Q35, 76L05, 76W05
DOI:
https://doi.org/10.1090/S0002-9947-1995-1297528-4
MathSciNet review:
1297528
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The mathematical question of the existence of structure for "fast", "slow" and "intermediate" MFD shock waves in the case of rectilinear motion in some model of plasma is stated in terms of a six-dimensional system of ordinary differential equations, which depends on five viscosity parameters. In this article we shall show that this system is gradient-like. Then by using the Conley theory we prove that the fast and the slow shocks always possess structure. Moreover, the intermediate shocks do not admit structure. Some limiting cases for singular viscosities are investigated. In particular, we show how the general results in the classical one fluid MHD theory are obtained when "the plasma viscosities" and
tend to zero.
- [1] J. Edward Anderson, Magnetohydrodynamic shock waves, The M.I.T. Press, Cambridge, Mass., 1963. MR 0149795
- [2] Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133
- [3] C. Conley and R. Easton, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc. 158 (1971), 35–61. MR 279830, https://doi.org/10.1090/S0002-9947-1971-0279830-1
- [4] Charles C. Conley and Joel A. Smoller, On the structure of magnetohydrodynamic shock waves, Comm. Pure Appl. Math. 27 (1974), 367–375. MR 368586, https://doi.org/10.1002/cpa.3160270306
- [5] Charles C. Conley and Joel A. Smoller, On the structure of magnetohydrodynamic shock waves. II, J. Math. Pures Appl. (9) 54 (1975), no. 4, 429–443. MR 454376
- [6] Charles C. Conley and Joel A. Smoller, Viscosity matrices for two-dimensional nonlinear hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 867–884. MR 274956, https://doi.org/10.1002/cpa.3160230603
- [7] Charles C. Conley and Joel A. Smoller, Shock waves as limits of progressive wave solutions of higher order equations, Comm. Pure Appl. Math. 24 (1971), 459–472. MR 283414, https://doi.org/10.1002/cpa.3160240402
- [8] -, Topological methods in the theory of shock waves, Berkeley Sympos. on Partial Differential Equations Summer, 1971.
- [9] P. Germain, A model of some plasma shock structures, Magneto-Fluid and Plasma Dynamics, Proc. Sympos. Appl. Math., vol. 18, Amer. Math. Soc., Providence, RI, 1967, pp. 17-45.
- [10] -, Shock waves, jump relations, and structure, Adv. in Appl. Mech. 12 (1972), 131-194.
- [11] P. Germain, Shock waves and shock-wave structure in magneto-fluid dynamics, Rev. Mod. Phys. 32 (1960), 951–958. MR 0129723, https://doi.org/10.1103/revmodphys.32.951
- [12] Mahmoud Hesaaraki, The structure of MFD shock waves in a model of two fluids, Nonlinearity 6 (1993), no. 1, 1–24. MR 1203049
- [13] Mahmud Hesaaraki, The structure of shock waves in magnetohydrodynamics, Mem. Amer. Math. Soc. 49 (1984), no. 302, v+96. MR 743547, https://doi.org/10.1090/memo/0302
- [14] Mahmoud Hesaaraki, The structure of shock waves in magnetohydrodynamics for purely transverse magnetic fields, SIAM J. Appl. Math. 51 (1991), no. 2, 412–428. MR 1095026, https://doi.org/10.1137/0151020
- [15] M. Hesaaraki, The structure of MFD shock waves in a model of plasma, J. Math. Pures Appl. (9) 72 (1993), no. 4, 377–404. MR 1228998
- [16] A. G. Kulikovskiy and G. A. Lyubimov, Magnetohydrodynamics, Addison-Wesley, Reading, MaA, 1965.
- [17] Roger Peyret, Sur la structure du choc lent dans un schéma à deux fluides non dissipatif, C. R. Acad. Sci. Paris 258 (1964), 2973–2976 (French). MR 164557
- [18] Roger Peyret, Sur la structure du choc lent dans un schéma à deux fluides avec dissipation, C. R. Acad. Sci. Paris 258 (1964), 3178–3181 (French). MR 161544
- [19] Dietmar Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), no. 1, 1–41. MR 797044, https://doi.org/10.1090/S0002-9947-1985-0797044-3
- [20] Joel Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR 688146
- [21] Joel A. Smoller and Charles C. Conley, Viscosity matrices for two-dimensional non-linear hyperbolic systems. II, Amer. J. Math. 94 (1972), 631–650. MR 320537, https://doi.org/10.2307/2373748
- [22] Joel A. Smoller and Charles C. Conley, Shock waves as limits of progressive wave solutions of higher order equations. II, Comm. Pure Appl. Math. 25 (1972), 133–146. MR 306721, https://doi.org/10.1002/cpa.3160250203
- [23] P. Thompson, Compressible-fluid dynamics, McGraw-Hill, New York, 1972.
- [24] Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, v. 28, American Mathematical Society, New York, 1942. MR 0007095
Retrieve articles in Transactions of the American Mathematical Society with MSC: 35L67, 34C99, 35Q35, 76L05, 76W05
Retrieve articles in all journals with MSC: 35L67, 34C99, 35Q35, 76L05, 76W05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1995-1297528-4
Keywords:
Plasma,
shock wave structure,
heteroclinic orbit,
Conley theory
Article copyright:
© Copyright 1995
American Mathematical Society