The structure of MFD shock waves for rectilinear motion in some models of plasma
HTML articles powered by AMS MathViewer
- by Mahmoud Hesaaraki
- Trans. Amer. Math. Soc. 347 (1995), 3423-3452
- DOI: https://doi.org/10.1090/S0002-9947-1995-1297528-4
- PDF | Request permission
Abstract:
The mathematical question of the existence of structure for "fast", "slow" and "intermediate" MFD shock waves in the case of rectilinear motion in some model of plasma is stated in terms of a six-dimensional system of ordinary differential equations, which depends on five viscosity parameters. In this article we shall show that this system is gradient-like. Then by using the Conley theory we prove that the fast and the slow shocks always possess structure. Moreover, the intermediate shocks do not admit structure. Some limiting cases for singular viscosities are investigated. In particular, we show how the general results in the classical one fluid MHD theory are obtained when "the plasma viscosities" $\beta$ and $\chi$ tend to zero.References
- J. Edward Anderson, Magnetohydrodynamic shock waves, The M.I.T. Press, Cambridge, Mass., 1963. MR 0149795
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133
- C. Conley and R. Easton, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc. 158 (1971), 35–61. MR 279830, DOI 10.1090/S0002-9947-1971-0279830-1
- Charles C. Conley and Joel A. Smoller, On the structure of magnetohydrodynamic shock waves, Comm. Pure Appl. Math. 27 (1974), 367–375. MR 368586, DOI 10.1002/cpa.3160270306
- Charles C. Conley and Joel A. Smoller, On the structure of magnetohydrodynamic shock waves. II, J. Math. Pures Appl. (9) 54 (1975), no. 4, 429–443. MR 454376
- Charles C. Conley and Joel A. Smoller, Viscosity matrices for two-dimensional nonlinear hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 867–884. MR 274956, DOI 10.1002/cpa.3160230603
- Charles C. Conley and Joel A. Smoller, Shock waves as limits of progressive wave solutions of higher order equations, Comm. Pure Appl. Math. 24 (1971), 459–472. MR 283414, DOI 10.1002/cpa.3160240402 —, Topological methods in the theory of shock waves, Berkeley Sympos. on Partial Differential Equations Summer, 1971. P. Germain, A model of some plasma shock structures, Magneto-Fluid and Plasma Dynamics, Proc. Sympos. Appl. Math., vol. 18, Amer. Math. Soc., Providence, RI, 1967, pp. 17-45. —, Shock waves, jump relations, and structure, Adv. in Appl. Mech. 12 (1972), 131-194.
- P. Germain, Shock waves and shock-wave structure in magneto-fluid dynamics, Rev. Mod. Phys. 32 (1960), 951–958. MR 0129723, DOI 10.1103/revmodphys.32.951
- Mahmoud Hesaaraki, The structure of MFD shock waves in a model of two fluids, Nonlinearity 6 (1993), no. 1, 1–24. MR 1203049
- Mahmud Hesaaraki, The structure of shock waves in magnetohydrodynamics, Mem. Amer. Math. Soc. 49 (1984), no. 302, v+96. MR 743547, DOI 10.1090/memo/0302
- Mahmoud Hesaaraki, The structure of shock waves in magnetohydrodynamics for purely transverse magnetic fields, SIAM J. Appl. Math. 51 (1991), no. 2, 412–428. MR 1095026, DOI 10.1137/0151020
- M. Hesaaraki, The structure of MFD shock waves in a model of plasma, J. Math. Pures Appl. (9) 72 (1993), no. 4, 377–404. MR 1228998 A. G. Kulikovskiy and G. A. Lyubimov, Magnetohydrodynamics, Addison-Wesley, Reading, MaA, 1965.
- Roger Peyret, Sur la structure du choc lent dans un schéma à deux fluides non dissipatif, C. R. Acad. Sci. Paris 258 (1964), 2973–2976 (French). MR 164557
- Roger Peyret, Sur la structure du choc lent dans un schéma à deux fluides avec dissipation, C. R. Acad. Sci. Paris 258 (1964), 3178–3181 (French). MR 161544
- Dietmar Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), no. 1, 1–41. MR 797044, DOI 10.1090/S0002-9947-1985-0797044-3
- Joel Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR 688146
- Joel A. Smoller and Charles C. Conley, Viscosity matrices for two-dimensional non-linear hyperbolic systems. II, Amer. J. Math. 94 (1972), 631–650. MR 320537, DOI 10.2307/2373748
- Joel A. Smoller and Charles C. Conley, Shock waves as limits of progressive wave solutions of higher order equations. II, Comm. Pure Appl. Math. 25 (1972), 133–146. MR 306721, DOI 10.1002/cpa.3160250203 P. Thompson, Compressible-fluid dynamics, McGraw-Hill, New York, 1972.
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 3423-3452
- MSC: Primary 35L67; Secondary 34C99, 35Q35, 76L05, 76W05
- DOI: https://doi.org/10.1090/S0002-9947-1995-1297528-4
- MathSciNet review: 1297528