The $7$-connected cobordism ring at $p=3$
HTML articles powered by AMS MathViewer
- by Mark A. Hovey and Douglas C. Ravenel
- Trans. Amer. Math. Soc. 347 (1995), 3473-3502
- DOI: https://doi.org/10.1090/S0002-9947-1995-1297530-2
- PDF | Request permission
Abstract:
In this paper, we study the cobordism spectrum $MO\left \langle 8 \right \rangle$ at the prime $3$. This spectrum is important because it is conjectured to play the role for elliptic cohomology that Spin cobordism plays for real $K$-theory. We show that the torsion is all killed by $3$, and that the Adams-Novikov spectral sequence collapses after only $2$ differentials. Many of our methods apply more generally.References
- J. F. Adams and H. R. Margolis, Modules over the Steenrod algebra, Topology 10 (1971), 271β282. MR 294450, DOI 10.1016/0040-9383(71)90020-6
- A. P. Bahri and M. E. Mahowald, Stiefel-Whitney classes in $H^{\ast } B\textrm {O}\langle \varphi (r)\rangle$, Proc. Amer. Math. Soc. 83 (1981), no.Β 3, 653β655. MR 627713, DOI 10.1090/S0002-9939-1981-0627713-9
- Robert R. Bruner, $\textrm {Ext}$ in the nineties, Algebraic topology (Oaxtepec, 1991) Contemp. Math., vol. 146, Amer. Math. Soc., Providence, RI, 1993, pp.Β 71β90. MR 1224908, DOI 10.1090/conm/146/01216
- B. I. Botvinnik, Structure of the ring $M\textrm {SU}_*$, Mat. Sb. 181 (1990), no.Β 4, 540β555 (Russian); English transl., Math. USSR-Sb. 69 (1991), no.Β 2, 581β596. MR 1055528, DOI 10.1070/SM1991v069n02ABEH001377
- A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), no.Β 4, 257β281. MR 551009, DOI 10.1016/0040-9383(79)90018-1
- R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, $H_\infty$ ring spectra and their applications, Lecture Notes in Mathematics, vol. 1176, Springer-Verlag, Berlin, 1986. MR 836132, DOI 10.1007/BFb0075405
- P. E. Conner and E. E. Floyd, Torsion in $\textrm {SU}$-bordism, Mem. Amer. Math. Soc. 60 (1966), 74. MR 189044
- Ethan S. Devinatz, Michael J. Hopkins, and Jeffrey H. Smith, Nilpotence and stable homotopy theory. I, Ann. of Math. (2) 128 (1988), no.Β 2, 207β241. MR 960945, DOI 10.2307/1971440
- Donald M. Davis and Mark Mahowald, $v_{1}$- and $v_{2}$-periodicity in stable homotopy theory, Amer. J. Math. 103 (1981), no.Β 4, 615β659. MR 623131, DOI 10.2307/2374044
- V. Giambalvo, The $\textrm {mod}$ $p$ cohomology of $\textrm {BO}\langle 4k\rangle$, Proc. Amer. Math. Soc. 20 (1969), 593β597. MR 236913, DOI 10.1090/S0002-9939-1969-0236913-6 V. Gorbunov and M. Mahowald, Some homotopy of the cobordism spectrum $MO\left \langle 8 \right \rangle$, preprint (1993). M. Hopkins and H. Miller, Enriched multiplication on the cohomology theory ${E_n}$, to appear. M. Hovey, ${\upsilon _n}$-elements in ring spectra and applications to bordism theory, preprint (1993). β, Bousfield localization functors and Hopkinsβ chromatic splitting conjecture, to appear in the Proceedings of the Cech Centennial Conference on Homotopy Theory.
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778 M. Mahowald and H. Sadofsky, ${\upsilon _n}$-telescopes and the Adams spectral sequence, preprint (1992).
- H. R. Margolis, Spectra and the Steenrod algebra, North-Holland Mathematical Library, vol. 29, North-Holland Publishing Co., Amsterdam, 1983. Modules over the Steenrod algebra and the stable homotopy category. MR 738973
- J. Peter May, A general algebraic approach to Steenrod operations, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrodβs Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970) Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 1970, pp.Β 153β231. MR 0281196
- Haynes Miller and Clarence Wilkerson, Vanishing lines for modules over the Steenrod algebra, J. Pure Appl. Algebra 22 (1981), no.Β 3, 293β307. MR 629336, DOI 10.1016/0022-4049(81)90104-3
- Stephen A. Mitchell, Finite complexes with $A(n)$-free cohomology, Topology 24 (1985), no.Β 2, 227β246. MR 793186, DOI 10.1016/0040-9383(85)90057-6
- John C. Moore and Franklin P. Peterson, Modules over the Steenrod algebra, Topology 11 (1972), 387β395. MR 377880, DOI 10.1016/0040-9383(72)90034-1
- S. P. Novikov, Methods of algebraic topology from the point of view of cobordism theory, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 855β951 (Russian). MR 0221509
- David J. Pengelley, The homotopy type of $M\textrm {SU}$, Amer. J. Math. 104 (1982), no.Β 5, 1101β1123. MR 675311, DOI 10.2307/2374085
- Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042
- Douglas C. Ravenel and W. Stephen Wilson, The Hopf ring for complex cobordism, J. Pure Appl. Algebra 9 (1976/77), no.Β 3, 241β280. MR 448337, DOI 10.1016/0022-4049(77)90070-6 S. Rosen, On torsion in connective cobordism, Ph. D. thesis, Northwestern University, 1972.
- William M. Singer, Connective fiberings over $\textrm {BU}$ and $\textrm {U}$, Topology 7 (1968), 271β303. MR 232392, DOI 10.1016/0040-9383(68)90006-2
- Howard Smith, On subnormal series with factors of finite rank: the join problem, Rend. Sem. Mat. Univ. Padova 88 (1992), 25β33. MR 1209114
- Robert E. Stong, Determination of $H^{\ast } (\textrm {BO}(k,\cdots ,\infty ),Z_{2})$ and $H^{\ast } (\textrm {BU}(k,\cdots ,\infty ),Z_{2})$, Trans. Amer. Math. Soc. 107 (1963), 526β544. MR 151963, DOI 10.1090/S0002-9947-1963-0151963-5
- V. V. Vershinin, Cobordisms and spectral sequences, Translations of Mathematical Monographs, vol. 130, American Mathematical Society, Providence, RI, 1993. Translated from the Russian manuscript by M. Farber; Translation edited by David Louvish. MR 1247708, DOI 10.1090/mmono/130
- W. Stephen Wilson, The $\Omega$-spectrum for Brown-Peterson cohomology. II, Amer. J. Math. 97 (1975), 101β123. MR 383390, DOI 10.2307/2373662
- Edward Witten, The index of the Dirac operator in loop space, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986) Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp.Β 161β181. MR 970288, DOI 10.1007/BFb0078045
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 3473-3502
- MSC: Primary 55N22; Secondary 55P42, 55T15
- DOI: https://doi.org/10.1090/S0002-9947-1995-1297530-2
- MathSciNet review: 1297530