Circle bundles and the Kreck-Stolz invariant
HTML articles powered by AMS MathViewer
- by Xianzhe Dai and Wei Ping Zhang
- Trans. Amer. Math. Soc. 347 (1995), 3587-3593
- DOI: https://doi.org/10.1090/S0002-9947-1995-1308006-8
- PDF | Request permission
Abstract:
We present a direct analytic calculation of the $s$-invariant of Kreck-Stolz for circle bundles, by evaluating the adiabatic limits of $\eta$ invariants. We believe that this method should have wider applications.References
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. MR 397797, DOI 10.1017/S0305004100049410
- Jean-Michel Bismut and Jeff Cheeger, $\eta$-invariants and their adiabatic limits, J. Amer. Math. Soc. 2 (1989), no. 1, 33–70. MR 966608, DOI 10.1090/S0894-0347-1989-0966608-3
- Jean-Michel Bismut and Jeff Cheeger, Transgressed Euler classes of $\textrm {SL}(2n,\mathbf Z)$ vector bundles, adiabatic limits of eta invariants and special values of $L$-functions, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 4, 335–391 (English, with English and French summaries). MR 1186908
- Xianzhe Dai, Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence, J. Amer. Math. Soc. 4 (1991), no. 2, 265–321. MR 1088332, DOI 10.1090/S0894-0347-1991-1088332-0 —, unpublished.
- Mikhael Gromov and H. Blaine Lawson Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 83–196 (1984). MR 720933
- Matthias Kreck and Stephan Stolz, Nonconnected moduli spaces of positive sectional curvature metrics, J. Amer. Math. Soc. 6 (1993), no. 4, 825–850. MR 1205446, DOI 10.1090/S0894-0347-1993-1205446-4
- Weiping Zhang, $\eta$-invariants and Rokhlin congruences, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 3, 305–308 (English, with English and French summaries). MR 1179725, DOI 10.5802/aif.1396
- Wei Ping Zhang, Circle bundles, adiabatic limits of $\eta$-invariants and Rokhlin congruences, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 1, 249–270 (English, with English and French summaries). MR 1262887
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 3587-3593
- MSC: Primary 58G10; Secondary 57R20
- DOI: https://doi.org/10.1090/S0002-9947-1995-1308006-8
- MathSciNet review: 1308006