## Global uniqueness for a two-dimensional semilinear elliptic inverse problem

HTML articles powered by AMS MathViewer

- by Victor Isakov and Adrian I. Nachman PDF
- Trans. Amer. Math. Soc.
**347**(1995), 3375-3390 Request permission

## Abstract:

For a general class of nonlinear Schrödinger equations $- \Delta u + a(x,u) = 0$ in a bounded planar domain $\Omega$ we show that the function $a(x,u)$ can be recovered from knowledge of the corresponding Dirichlet-to-Neumann map on the boundary $\partial \Omega$.## References

- M. Aizenman and B. Simon,
*Brownian motion and Harnack inequality for Schrödinger operators*, Comm. Pure Appl. Math.**35**(1982), no. 2, 209–273. MR**644024**, DOI 10.1002/cpa.3160350206
Yu. M. Berezanskii, Trudy Moskov. Mat. Obshch. - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR**0473443** - Victor Isakov,
*Completeness of products of solutions and some inverse problems for PDE*, J. Differential Equations**92**(1991), no. 2, 305–316. MR**1120907**, DOI 10.1016/0022-0396(91)90051-A - V. Isakov,
*On uniqueness in inverse problems for semilinear parabolic equations*, Arch. Rational Mech. Anal.**124**(1993), no. 1, 1–12. MR**1233645**, DOI 10.1007/BF00392201 - Victor Isakov and Ziqi Sun,
*The inverse scattering at fixed energies in two dimensions*, Indiana Univ. Math. J.**44**(1995), no. 3, 883–896. MR**1375354**, DOI 10.1512/iumj.1995.44.2013 - Victor Isakov and John Sylvester,
*Global uniqueness for a semilinear elliptic inverse problem*, Comm. Pure Appl. Math.**47**(1994), no. 10, 1403–1410. MR**1295934**, DOI 10.1002/cpa.3160471005 - Adrian I. Nachman,
*Reconstructions from boundary measurements*, Ann. of Math. (2)**128**(1988), no. 3, 531–576. MR**970610**, DOI 10.2307/1971435 - Adrian I. Nachman,
*Inverse scattering at fixed energy*, Mathematical physics, X (Leipzig, 1991) Springer, Berlin, 1992, pp. 434–441. MR**1386440**, DOI 10.1007/978-3-642-77303-7_{4}8
—, - R. G. Novikov,
*The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator*, J. Funct. Anal.**103**(1992), no. 2, 409–463. MR**1151554**, DOI 10.1016/0022-1236(92)90127-5 - Zi Qi Sun,
*On an inverse boundary value problem in two dimensions*, Comm. Partial Differential Equations**14**(1989), no. 8-9, 1101–1113. MR**1017066**, DOI 10.1080/03605308908820646 - Ziqi Sun,
*On a quasilinear inverse boundary value problem*, Math. Z.**221**(1996), no. 2, 293–305. MR**1376299**, DOI 10.1007/BF02622117 - Zi Qi Sun and Gunther Uhlmann,
*Generic uniqueness for an inverse boundary value problem*, Duke Math. J.**62**(1991), no. 1, 131–155. MR**1104326**, DOI 10.1215/S0012-7094-91-06206-X - Zi Qi Sun and Gunther Uhlmann,
*Recovery of singularities for formally determined inverse problems*, Comm. Math. Phys.**153**(1993), no. 3, 431–445. MR**1218927** - John Sylvester and Gunther Uhlmann,
*A uniqueness theorem for an inverse boundary value problem in electrical prospection*, Comm. Pure Appl. Math.**39**(1986), no. 1, 91–112. MR**820341**, DOI 10.1002/cpa.3160390106

**7**(1958), 3-62.

*Global uniqueness for a two-dimensional inverse boundary value problem*, Univ. of Rochester, Dept. of Math. Preprint Series 19, 1993;Ann. of Math. (1995) (to appear).

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**347**(1995), 3375-3390 - MSC: Primary 35R30; Secondary 35J60
- DOI: https://doi.org/10.1090/S0002-9947-1995-1311909-1
- MathSciNet review: 1311909