Test ideals in local rings
HTML articles powered by AMS MathViewer
- by Karen E. Smith
- Trans. Amer. Math. Soc. 347 (1995), 3453-3472
- DOI: https://doi.org/10.1090/S0002-9947-1995-1311917-0
- PDF | Request permission
Abstract:
It is shown that certain aspects of the theory of tight closure are well behaved under localization. Let $J$ be the parameter test ideal for $R$, a complete local Cohen-Macaulay ring of positive prime characteristic. For any multiplicative system $U \subset R$, it is shown that $J{U^{ - 1}}R$ is the parameter test ideal for ${U^{ - 1}}R$. This is proved by proving more general localization results for the here-introduced classes of "${\text {F}}$-ideals" of $R$ and "${\text {F}}$-submodules of the canonical module" of $R$, which are annihilators of $R$ modules with an action of Frobenius. It also follows that the parameter test ideal cannot be contained in any parameter ideal of $R$.References
- Ian M. Aberbach, Melvin Hochster, and Craig Huneke, Localization of tight closure and modules of finite phantom projective dimension, J. Reine Angew. Math. 434 (1993), 67–114. MR 1195691, DOI 10.1515/crll.1993.434.67
- Yôichi Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ. 23 (1983), no. 1, 85–94. MR 692731, DOI 10.1215/kjm/1250521612
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Richard Fedder and Keiichi Watanabe, A characterization of $F$-regularity in terms of $F$-purity, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 227–245. MR 1015520, DOI 10.1007/978-1-4612-3660-3_{1}1
- Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961. MR 0224620
- Jürgen Herzog and Ernst Kunz (eds.), Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Mathematics, Vol. 238, Springer-Verlag, Berlin-New York, 1971. Seminar über die lokale Kohomologietheorie von Grothendieck, Universität Regensburg, Wintersemester 1970/1971. MR 0412177
- Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR 1017784, DOI 10.1090/S0894-0347-1990-1017784-6
- Melvin Hochster and Craig Huneke, Infinite integral extensions and big Cohen-Macaulay algebras, Ann. of Math. (2) 135 (1992), no. 1, 53–89. MR 1147957, DOI 10.2307/2946563
- Melvin Hochster and Craig Huneke, $F$-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994), no. 1, 1–62. MR 1273534, DOI 10.1090/S0002-9947-1994-1273534-X
- Melvin Hochster and Craig Huneke, Tight closure of parameter ideals and splitting in module-finite extensions, J. Algebraic Geom. 3 (1994), no. 4, 599–670. MR 1297848 —, Indecomposable canonical modules and connectedness, Proc. of Summer Research Conference, Mt. Holyoke, 1994.
- Craig Huneke, Uniform bounds in Noetherian rings, Invent. Math. 107 (1992), no. 1, 203–223. MR 1135470, DOI 10.1007/BF01231887
- Leif Melkersson and Peter Schenzel, The co-localization of an Artinian module, Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 1, 121–131. MR 1317331, DOI 10.1017/S0013091500006258
- K. E. Smith, Tight closure of parameter ideals, Invent. Math. 115 (1994), no. 1, 41–60. MR 1248078, DOI 10.1007/BF01231753 —, $F$-rational rings have rational singularities, (preprint). —, Tight closure in graded rings, (preprint). J. Velez, Openness of the $F$-rational locus, smooth base change and Koh ’s conjecture, Thesis, Univ. of Michigan, 1993.
- Lori J. Williams, Uniform stability of kernels of Koszul cohomology indexed by the Frobenius endomorphism, J. Algebra 172 (1995), no. 3, 721–743. MR 1324179, DOI 10.1006/jabr.1995.1067 Siamak Yassemi, Co-associated primes, Københavns Universitet Mathematisk Institut preprint series, 12, 1993, pp. 1-30.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 3453-3472
- MSC: Primary 13A35; Secondary 13H10
- DOI: https://doi.org/10.1090/S0002-9947-1995-1311917-0
- MathSciNet review: 1311917