Hybrid spaces with interesting cohomology
HTML articles powered by AMS MathViewer
- by Kathryn Lesh
- Trans. Amer. Math. Soc. 347 (1995), 3247-3262
- DOI: https://doi.org/10.1090/S0002-9947-1995-1316857-9
- PDF | Request permission
Abstract:
Let $p$ be an odd prime, and let $R$ be a polynomial algebra over the Steenrod algebra with generators in dimensions prime to $p$. To such an algebra is associated a $p$-adic pseudoreflection group $W$, and we assume that $W$ is of order prime to $p$ and irreducible. Adjoin to $R$ a one-dimensional element $z$, and give $R[z]$ an action of the Steenrod algebra by $\beta z = 0$ and $\beta x = (\left | x \right |/2)zx$ for an even dimensional element $x$. We show that the subalgebra of elements of $R[z]$ consisting of elements of degree greater than one is realized uniquely, up to homotopy, as the cohomology of a $p$-complete space. This space can be thought of as a cross between spaces studied by Aguade, Broto, and Notbohm, and the Clark-Ewing examples, further studied by Dwyer, Miller, and Wilkerson.References
- J. Aguadé, C. Broto, and D. Notbohm, Homotopy classification of spaces with interesting cohomology and a conjecture of Cooke. I, Topology 33 (1994), no. 3, 455–492. MR 1286926, DOI 10.1016/0040-9383(94)90023-X
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
- Allan Clark and John Ewing, The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974), 425–434. MR 367979
- E. Dror Farjoun and J. Smith, A geometric interpretation of Lannes’ functor $\textbf {T}$, Astérisque 191 (1990), 6, 87–95. International Conference on Homotopy Theory (Marseille-Luminy, 1988). MR 1098968
- W. G. Dwyer, Strong convergence of the Eilenberg-Moore spectral sequence, Topology 13 (1974), 255–265. MR 394663, DOI 10.1016/0040-9383(74)90018-4
- W. G. Dwyer, H. R. Miller, and C. W. Wilkerson, Homotopical uniqueness of classifying spaces, Topology 31 (1992), no. 1, 29–45. MR 1153237, DOI 10.1016/0040-9383(92)90062-M
- William G. Dwyer and Clarence W. Wilkerson, Spaces of null homotopic maps, Astérisque 191 (1990), 6, 97–108. International Conference on Homotopy Theory (Marseille-Luminy, 1988). MR 1098969
- W. Dwyer and A. Zabrodsky, Maps between classifying spaces, Algebraic topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298, Springer, Berlin, 1987, pp. 106–119. MR 928826, DOI 10.1007/BFb0083003
- Jean Lannes, Sur les espaces fonctionnels dont la source est le classifiant d’un $p$-groupe abélien élémentaire, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 135–244 (French). With an appendix by Michel Zisman. MR 1179079
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 3247-3262
- MSC: Primary 55S10; Secondary 55P15, 55P60
- DOI: https://doi.org/10.1090/S0002-9947-1995-1316857-9
- MathSciNet review: 1316857