Global surjectivity of submersions via contractibility of the fibers
HTML articles powered by AMS MathViewer
- by Patrick J. Rabier
- Trans. Amer. Math. Soc. 347 (1995), 3405-3422
- DOI: https://doi.org/10.1090/S0002-9947-1995-1321587-3
- PDF | Request permission
Abstract:
We give a sufficient condition for a ${C^1}$ submersion $F:X \to Y$, $X$ and $Y$ real Banach spaces, to be surjective with contractible fibers ${F^{ - 1}}(y)$. Roughly speaking, this condition "interpolates" two well-known but unrelated hypotheses corresponding to the two extreme cases: Hadamard’s criterion when $Y \simeq X$ and $F$ is a local diffeomorphism, and the Palais-Smale condition when $Y = \mathbb {R}$. These results may be viewed as a global variant of the implicit function theorem, which unlike the local one does not require split kernels. They are derived from a deformation theorem tailored to fit functionals with a norm-like nondifferentiability.References
- R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, tensor analysis, and applications, 2nd ed., Applied Mathematical Sciences, vol. 75, Springer-Verlag, New York, 1988. MR 960687, DOI 10.1007/978-1-4612-1029-0
- M. S. Berger and R. A. Plastock, On the singularities of nonlinear Fredholm operators of positive index, Proc. Amer. Math. Soc. 79 (1980), no. 2, 217–221. MR 565342, DOI 10.1090/S0002-9939-1980-0565342-5
- Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, New York, 1993. MR 1224675, DOI 10.1007/978-1-4757-6848-0
- Dan Burghelea and Nicolaas H. Kuiper, Hilbert manifolds, Ann. of Math. (2) 90 (1969), 379–417. MR 253374, DOI 10.2307/1970743 G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitati, Rend. Acad. Sci. Lett. Istituto Lombardo 112 (1978), 332-336.
- William J. Davis, David W. Dean, and Ivan Singer, Complemented subspaces and $\Lambda$ systems in Banach spaces, Israel J. Math. 6 (1968), 303–309. MR 234259, DOI 10.1007/BF02760262
- Klaus Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. MR 787404, DOI 10.1007/978-3-662-00547-7
- Clifford J. Earle and James Eells Jr., Foliations and fibrations, J. Differential Geometry 1 (1967), no. 1, 33–41. MR 215320
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR 0448362
- J. Lindenstrauss and L. Tzafriri, On the complemented subspaces problem, Israel J. Math. 9 (1971), 263–269. MR 276734, DOI 10.1007/BF02771592
- Nicole Moulis, Approximation de fonctions différentiables sur certains espaces de Banach, Ann. Inst. Fourier (Grenoble) 21 (1971), no. 4, 293–345 (French, with English summary). MR 375379
- Richard S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115–132. MR 259955, DOI 10.1016/0040-9383(66)90013-9
- Patrick J. Rabier, On global diffeomorphisms of Euclidean space, Nonlinear Anal. 21 (1993), no. 12, 925–947. MR 1249211, DOI 10.1016/0362-546X(93)90117-B
- Guillermo Restrepo, Differentiable norms in Banach spaces, Bull. Amer. Math. Soc. 70 (1964), 413–414. MR 161129, DOI 10.1090/S0002-9904-1964-11121-6
- Eberhard Zeidler, Nonlinear functional analysis and its applications. III, Springer-Verlag, New York, 1985. Variational methods and optimization; Translated from the German by Leo F. Boron. MR 768749, DOI 10.1007/978-1-4612-5020-3
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 3405-3422
- MSC: Primary 58C15
- DOI: https://doi.org/10.1090/S0002-9947-1995-1321587-3
- MathSciNet review: 1321587