$L^ p$ spectra of pseudodifferential operators generating integrated semigroups
HTML articles powered by AMS MathViewer
- by Matthias Hieber
- Trans. Amer. Math. Soc. 347 (1995), 4023-4035
- DOI: https://doi.org/10.1090/S0002-9947-1995-1303120-5
- PDF | Request permission
Abstract:
Consider the ${L^p}$-realization ${\text {O}}{{\text {p}}_p}(a)$ of a pseudodifferential operator with symbol $a \in S_{\rho ,0}^m$ having constant coefficients. We show that for a certain class of symbols the spectrum of ${\text {O}}{{\text {p}}_p}(a)$ is independent of $p$. This implies that ${\text {O}}{{\text {p}}_p}(a)$ generates an $N$-times integrated semigroup on ${L^p}({\mathbb {R}^n})$ for a certain $N$ if and only if $\rho ({\text {O}}{{\text {p}}_p}(a)) \ne \emptyset$ and the numerical range of $a$ is contained in a left half-plane. Our method allows us also to construct examples of operators generating integrated semigroups on ${L^p}({\mathbb {R}^n})$ if and only if $p$ is sufficiently close to $2$.References
- Wolfgang Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), no. 3, 327–352. MR 920499, DOI 10.1007/BF02774144
- W. Arendt and H. Kellermann, Integrated solutions of Volterra integrodifferential equations and applications, Volterra integrodifferential equations in Banach spaces and applications (Trento, 1987) Pitman Res. Notes Math. Ser., vol. 190, Longman Sci. Tech., Harlow, 1989, pp. 21–51. MR 1018871
- M. Balabane and H. A. Emamirad, $L^p$ estimates for Schrödinger evolution equations, Trans. Amer. Math. Soc. 292 (1985), no. 1, 357–373. MR 805968, DOI 10.1090/S0002-9947-1985-0805968-3
- Erik Balslev, The essential spectrum of elliptic differential operators in $L^{p}(R_{n})$, Trans. Amer. Math. Soc. 116 (1965), 193–217. MR 190524, DOI 10.1090/S0002-9947-1965-0190524-0
- Philip Brenner, The Cauchy problem for symmetric hyperbolic systems in $L_{p}$, Math. Scand. 19 (1966), 27–37. MR 212427, DOI 10.7146/math.scand.a-10793
- Ralph deLaubenfels, Existence families, functional calculi and evolution equations, Lecture Notes in Mathematics, vol. 1570, Springer-Verlag, Berlin, 1994. MR 1290783, DOI 10.1007/BFb0073401 N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
- Hector O. Fattorini, The Cauchy problem, Encyclopedia of Mathematics and its Applications, vol. 18, Addison-Wesley Publishing Co., Reading, Mass., 1983. With a foreword by Felix E. Browder. MR 692768
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- Jerome A. Goldstein, Semigroups of linear operators and applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. MR 790497
- Matthias Hieber, Integrated semigroups and differential operators on $L^p$ spaces, Math. Ann. 291 (1991), no. 1, 1–16. MR 1125004, DOI 10.1007/BF01445187
- Matthias Hieber, Spectral theory and Cauchy problems on $L^p$ spaces, Math. Z. 216 (1994), no. 4, 613–628. MR 1288048, DOI 10.1007/BF02572342 E. Hille and R. S. Philipps, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, RI, 1957.
- Lars Hörmander, Estimates for translation invariant operators in $L^{p}$ spaces, Acta Math. 104 (1960), 93–140. MR 121655, DOI 10.1007/BF02547187
- Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035, DOI 10.1007/978-3-642-96750-4
- Franklin T. Iha and C. F. Schubert, The spectrum of partial differential operators on $L^{p}\,(R^{n})$, Trans. Amer. Math. Soc. 152 (1970), 215–226. MR 270211, DOI 10.1090/S0002-9947-1970-0270211-2
- Carlos E. Kenig and Peter A. Tomas, $L^{p}$ behavior of certain second order partial differential operators, Trans. Amer. Math. Soc. 262 (1980), no. 2, 521–531. MR 586732, DOI 10.1090/S0002-9947-1980-0586732-5
- Gunter Lumer, Solutions généralisées et semi-groupes intégrés, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 7, 577–582 (French, with English summary). MR 1050135
- Akihiko Miyachi, On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 2, 267–315. MR 633000
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Martin Schechter, Spectra of partial differential operators, 2nd ed., North-Holland Series in Applied Mathematics and Mechanics, vol. 14, North-Holland Publishing Co., Amsterdam, 1986. MR 869254
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 4023-4035
- MSC: Primary 47G30; Secondary 35P05, 35S05, 47D06
- DOI: https://doi.org/10.1090/S0002-9947-1995-1303120-5
- MathSciNet review: 1303120