Mean value property and subdifferential criteria for lower semicontinuous functions
HTML articles powered by AMS MathViewer
- by Didier Aussel, Jean-Noël Corvellec and Marc Lassonde
- Trans. Amer. Math. Soc. 347 (1995), 4147-4161
- DOI: https://doi.org/10.1090/S0002-9947-1995-1307998-0
- PDF | Request permission
Abstract:
We define an abstract notion of subdifferential operator and an associated notion of smoothness of a norm covering all the standard situations. In particular, a norm is smooth for the Gâteaux (Fréchet, Hadamard, Lipschitz-smooth) subdifferential if it is Gâteaux (Fréchet, Hadamard, Lipschitz) smooth in the classical sense, while on the other hand any norm is smooth for the Clarke-Rockafellar subdifferential. We then show that lower semicontinuous functions on a Banach space satisfy an Approximate Mean Value Inequality with respect to any subdifferential for which the norm is smooth, thus providing a new insight on the connection between the smoothness of norms and the subdifferentiability properties of functions. The proof relies on an adaptation of the "smooth" variational principle of Borwein-Preiss. Along the same vein, we derive subdifferential criteria for coercivity, Lipschitz behavior, conemonotonicity, quasiconvexity, and convexity of lower semicontinuous functions which clarify, unify and extend many existing results for specific subdifferentials.References
- Edgar Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31–47. MR 231199, DOI 10.1007/BF02391908
- Didier Aussel, Jean-Noël Corvellec, and Marc Lassonde, Subdifferential characterization of quasiconvexity and convexity, J. Convex Anal. 1 (1994), no. 2, 195–201 (1995). MR 1363111
- J. M. Borwein and D. Preiss, A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions, Trans. Amer. Math. Soc. 303 (1987), no. 2, 517–527. MR 902782, DOI 10.1090/S0002-9947-1987-0902782-7
- J. M. Borwein and H. M. Strójwas, Proximal analysis and boundaries of closed sets in Banach space. II. Applications, Canad. J. Math. 39 (1987), no. 2, 428–472. MR 899844, DOI 10.4153/CJM-1987-019-4
- L. Čaklović, Shu Jie Li, and M. Willem, A note on Palais-Smale condition and coercivity, Differential Integral Equations 3 (1990), no. 4, 799–800. MR 1044221
- Frank H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR 709590 F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Introduction to nonsmooth analysis, book in preparation.
- F. H. Clarke, R. J. Stern, and P. R. Wolenski, Subgradient criteria for monotonicity, the Lipschitz condition, and convexity, Canad. J. Math. 45 (1993), no. 6, 1167–1183. MR 1247540, DOI 10.4153/CJM-1993-065-x
- R. Correa, A. Jofré, and L. Thibault, Characterization of lower semicontinuous convex functions, Proc. Amer. Math. Soc. 116 (1992), no. 1, 67–72. MR 1126193, DOI 10.1090/S0002-9939-1992-1126193-4
- Rafael Correa, Alejandro Jofré, and Lionel Thibault, Subdifferential monotonicity as characterization of convex functions, Numer. Funct. Anal. Optim. 15 (1994), no. 5-6, 531–535. MR 1281560, DOI 10.1080/01630569408816579
- David G. Costa and Elves Alves de B. e Silva, The Palais-Smale condition versus coercivity, Nonlinear Anal. 16 (1991), no. 4, 371–381. MR 1093847, DOI 10.1016/0362-546X(91)90036-Z
- M. G. Crandall, L. C. Evans, and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), no. 2, 487–502. MR 732102, DOI 10.1090/S0002-9947-1984-0732102-X
- Marco Degiovanni, Antonio Marino, and Mario Tosques, Evolution equations with lack of convexity, Nonlinear Anal. 9 (1985), no. 12, 1401–1443. MR 820649, DOI 10.1016/0362-546X(85)90098-7
- Robert Deville, Gilles Godefroy, and Václav Zizler, A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions, J. Funct. Anal. 111 (1993), no. 1, 197–212. MR 1200641, DOI 10.1006/jfan.1993.1009
- I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353. MR 346619, DOI 10.1016/0022-247X(74)90025-0
- D. Goeleven, A note on Palais-Smale condition in the sense of Szulkin, Differential Integral Equations 6 (1993), no. 5, 1041–1043. MR 1230479
- A. D. Ioffe, Approximate subdifferentials and applications. I. The finite-dimensional theory, Trans. Amer. Math. Soc. 281 (1984), no. 1, 389–416. MR 719677, DOI 10.1090/S0002-9947-1984-0719677-1
- A. D. Ioffe, Calculus of Dini subdifferentials of functions and contingent coderivatives of set-valued maps, Nonlinear Anal. 8 (1984), no. 5, 517–539. MR 741606, DOI 10.1016/0362-546X(84)90091-9
- A. D. Ioffe, Proximal analysis and approximate subdifferentials, J. London Math. Soc. (2) 41 (1990), no. 1, 175–192. MR 1063554, DOI 10.1112/jlms/s2-41.1.175
- Dinh The Luc, Characterisations of quasiconvex functions, Bull. Austral. Math. Soc. 48 (1993), no. 3, 393–406. MR 1248043, DOI 10.1017/S0004972700015859
- Đinh Thế Lục, On the maximal monotonicity of subdifferentials, Acta Math. Vietnam. 18 (1993), no. 1, 99–106. MR 1248886
- L. McLinden, An application of Ekeland’s theorem to minimax problems, Nonlinear Anal. 6 (1982), no. 2, 189–196. MR 651700, DOI 10.1016/0362-546X(82)90087-6
- Jean-Paul Penot, Sous-différentiels de fonctions numériques non convexes, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1553–1555 (French). MR 352978
- J.-P. Penot, On the mean value theorem, Optimization 19 (1988), no. 2, 147–156. MR 948386, DOI 10.1080/02331938808843330
- Robert R. Phelps, Convex functions, monotone operators and differentiability, 2nd ed., Lecture Notes in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1993. MR 1238715
- René A. Poliquin, Subgradient monotonicity and convex functions, Nonlinear Anal. 14 (1990), no. 4, 305–317. MR 1040008, DOI 10.1016/0362-546X(90)90167-F
- R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209–216. MR 262827
- R. T. Rockafellar, Directionally Lipschitzian functions and subdifferential calculus, Proc. London Math. Soc. (3) 39 (1979), no. 2, 331–355. MR 548983, DOI 10.1112/plms/s3-39.2.331
- R. T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canadian J. Math. 32 (1980), no. 2, 257–280. MR 571922, DOI 10.4153/CJM-1980-020-7
- R. T. Rockafellar, Proximal subgradients, marginal values, and augmented Lagrangians in nonconvex optimization, Math. Oper. Res. 6 (1981), no. 3, 424–436. MR 629642, DOI 10.1287/moor.6.3.424
- S. Simons, The least slope of a convex function and the maximal monotonicity of its subdifferential, J. Optim. Theory Appl. 71 (1991), no. 1, 127–136. MR 1131453, DOI 10.1007/BF00940043
- Lionel Thibault and Dariusz Zagrodny, Integration of subdifferentials of lower semicontinuous functions on Banach spaces, J. Math. Anal. Appl. 189 (1995), no. 1, 33–58. MR 1312029, DOI 10.1006/jmaa.1995.1003
- Jay S. Treiman, Generalized gradients, Lipschitz behavior and directional derivatives, Canad. J. Math. 37 (1985), no. 6, 1074–1084. MR 828835, DOI 10.4153/CJM-1985-058-1
- Dariusz Zagrodny, Approximate mean value theorem for upper subderivatives, Nonlinear Anal. 12 (1988), no. 12, 1413–1428. MR 972409, DOI 10.1016/0362-546X(88)90088-0
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 4147-4161
- MSC: Primary 49J52; Secondary 46N10, 47H99, 58C20
- DOI: https://doi.org/10.1090/S0002-9947-1995-1307998-0
- MathSciNet review: 1307998