Branched circle packings and discrete Blaschke products
HTML articles powered by AMS MathViewer
- by Tomasz Dubejko
- Trans. Amer. Math. Soc. 347 (1995), 4073-4103
- DOI: https://doi.org/10.1090/S0002-9947-1995-1308008-1
- PDF | Request permission
Abstract:
In this paper we introduce the notion of discrete Blaschke products via circle packing. We first establish necessary and sufficient conditions for the existence of finite branched circle packings. Next, discrete Blaschke products are defined as circle packing maps from univalent circle packings that properly fill $D = \{ z:\left | z \right | < 1\}$ to the corresponding branched circle packings that properly cover $D$. It is verified that such maps have all geometric properties of their classical counterparts. Finally, we show that any classical finite Blaschke product can be approximated uniformly on compacta of $D$ by discrete ones.References
- Imre Bárány, Zoltán Füredi, and János Pach, Discrete convex functions and proof of the six circle conjecture of Fejes Tóth, Canad. J. Math. 36 (1984), no. 3, 569–576. MR 752985, DOI 10.4153/CJM-1984-035-1
- Alan F. Beardon and Kenneth Stephenson, The uniformization theorem for circle packings, Indiana Univ. Math. J. 39 (1990), no. 4, 1383–1425. MR 1087197, DOI 10.1512/iumj.1990.39.39062
- Alan F. Beardon and Kenneth Stephenson, The Schwarz-Pick lemma for circle packings, Illinois J. Math. 35 (1991), no. 4, 577–606. MR 1115988
- Philip L. Bowers, The upper Perron method for labelled complexes with applications to circle packings, Math. Proc. Cambridge Philos. Soc. 114 (1993), no. 2, 321–345. MR 1230135, DOI 10.1017/S0305004100071619
- Ithiel Carter and Burt Rodin, An inverse problem for circle packing and conformal mapping, Trans. Amer. Math. Soc. 334 (1992), no. 2, 861–875. MR 1081937, DOI 10.1090/S0002-9947-1992-1081937-X
- Tomasz Dubejko, Infinite branched circle packings and discrete complex polynomials, J. London Math. Soc. (2) 56 (1997), no. 2, 347–368. MR 1489142, DOI 10.1112/S0024610797005280
- Tomasz Dubejko and Kenneth Stephenson, The branched Schwarz lemma: a classical result via circle packing, Michigan Math. J. 42 (1995), no. 2, 211–234. MR 1342487, DOI 10.1307/mmj/1029005225
- Brett T. Garrett, Circle packings and polyhedral surfaces, Discrete Comput. Geom. 8 (1992), no. 4, 429–440. MR 1176380, DOI 10.1007/BF02293057
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463
- Burt Rodin, Schwarz’s lemma for circle packings, Invent. Math. 89 (1987), no. 2, 271–289. MR 894380, DOI 10.1007/BF01389079
- Burt Rodin and Dennis Sullivan, The convergence of circle packings to the Riemann mapping, J. Differential Geom. 26 (1987), no. 2, 349–360. MR 906396
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- Kenneth Stephenson, Circle packings in the approximation of conformal mappings, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 407–415. MR 1049434, DOI 10.1090/S0273-0979-1990-15946-4 —, A probabilistic proof of Thurston’s conjecture on circle packings, preprint. William Thurston, The finite Riemann mapping theorem, Invited talk, An International Symposium at Purdue University on the occasion of the proof of the Bieberbach conjecture, March 1985. —, The geometry and topology of $3$-manifolds, Princeton University Notes, 1980.
- Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR 950174, DOI 10.1007/BFb0077904
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 4073-4103
- MSC: Primary 30D50; Secondary 30G25, 52C15
- DOI: https://doi.org/10.1090/S0002-9947-1995-1308008-1
- MathSciNet review: 1308008