The complex zeros of random polynomials
HTML articles powered by AMS MathViewer
- by Larry A. Shepp and Robert J. Vanderbei
- Trans. Amer. Math. Soc. 347 (1995), 4365-4384
- DOI: https://doi.org/10.1090/S0002-9947-1995-1308023-8
- PDF | Request permission
Abstract:
Mark Kac gave an explicit formula for the expectation of the number, ${\nu _n}(\Omega )$, of zeros of a random polynomial, \[ {P_n}(z) = \sum \limits _{j = 0}^{n - 1} {{\eta _j}{z^j}} ,\] in any measurable subset $\Omega$ of the reals. Here, ${\eta _0}, \ldots ,{\eta _{n - 1}}$ are independent standard normal random variables. In fact, for each $n > 1$, he obtained an explicit intensity function ${g_n}$ for which \[ {\mathbf {E}}{\nu _n}(\Omega ) = \int _\Omega {{g_n}(x) dx.} \] Here, we extend this formula to obtain an explicit formula for the expected number of zeros in any measurable subset $\Omega$ of the complex plane $\mathbb {C}$. Namely, we show that \[ {\mathbf {E}}{\nu _n}(\Omega ) = \int _\Omega {{h_n}(x,y) dxdy + \int _{\Omega \cap \mathbb {R}} {{g_n}(x) dx,} } \] where ${h_n}$ is an explicit intensity function. We also study the asymptotics of ${h_n}$ showing that for large $n$ its mass lies close to, and is uniformly distributed around, the unit circle.References
- Lars V. Ahlfors, Complex analysis, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable. MR 510197
- A. T. Bharucha-Reid and M. Sambandham, Random polynomials, Probability and Mathematical Statistics, Academic Press, Inc., Orlando, FL, 1986. MR 856019
- Alan Edelman and Eric Kostlan, How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 1–37. MR 1290398, DOI 10.1090/S0273-0979-1995-00571-9
- P. Erdös and P. Turán, On the distribution of roots of polynomials, Ann. of Math. (2) 51 (1950), 105–119. MR 33372, DOI 10.2307/1969500
- J. M. Hammersley, The zeros of a random polynomial, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II, University of California Press, Berkeley-Los Angeles, Calif., 1956, pp. 89–111. MR 0084888
- I. A. Ibragimov and N. B. Maslova, The mean number of real zeros of random polynomials. I. Coefficients with zero mean, Teor. Verojatnost. i Primenen. 16 (1971), 229–248 (Russian, with English summary). MR 0286157
- M. Kac, On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49 (1943), 314–320. MR 7812, DOI 10.1090/S0002-9904-1943-07912-8 —, Probability and related topics in physical sciences, Interscience, London, 1959.
- S. V. Konyagin, On the minimum modulus of random trigonometric polynomials with coefficients $\pm 1$, Mat. Zametki 56 (1994), no. 3, 80–101, 158 (Russian, with Russian summary); English transl., Math. Notes 56 (1994), no. 3-4, 931–947 (1995). MR 1309842, DOI 10.1007/BF02362411
- B. F. Logan and L. A. Shepp, Real zeros of random polynomials, Proc. London Math. Soc. (3) 18 (1968), 29–35. MR 234512, DOI 10.1112/plms/s3-18.1.29
- B. F. Logan and L. A. Shepp, Real zeros of random polynomials. II, Proc. London Math. Soc. (3) 18 (1968), 308–314. MR 234513, DOI 10.1112/plms/s3-18.2.308
- S. O. Rice, Mathematical analysis of random noise, Bell System Tech. J. 24 (1945), 46–156. MR 11918, DOI 10.1002/j.1538-7305.1945.tb00453.x D. C. Stevens, The average and variance of the number of real zeros of random functions, Ph.D. Dissertation, New York University, New York, 1965.
- D. I. Šparo and M. G. Šur, On the distribution of roots of random polynomials, Vestnik Moskov. Univ. Ser. I Mat. Meh. 1962 (1962), no. 3, 40–43 (Russian, with English summary). MR 0139199
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 4365-4384
- MSC: Primary 30C15; Secondary 60G99
- DOI: https://doi.org/10.1090/S0002-9947-1995-1308023-8
- MathSciNet review: 1308023