$\textbf {R}$-trees, small cancellation, and convergence
HTML articles powered by AMS MathViewer
- by Andrew Chermak
- Trans. Amer. Math. Soc. 347 (1995), 4515-4531
- DOI: https://doi.org/10.1090/S0002-9947-1995-1316846-4
- PDF | Request permission
Abstract:
The "metric small cancellation hypotheses" of combinatorial group theory imply, when satisfied, that a given presentation has a solvable Word Problem via Dehn’s Algorithm. The present work both unifies and generalizes the small cancellation hypotheses, and analyzes them by means of group actions on trees, leading to the strengthening of some classical results.References
- Roger Alperin and Hyman Bass, Length functions of group actions on $\Lambda$-trees, Combinatorial group theory and topology (Alta, Utah, 1984) Ann. of Math. Stud., vol. 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 265–378. MR 895622
- Andrew Chermak, Triangles of groups, Trans. Amer. Math. Soc. 347 (1995), no. 11, 4533–4558. MR 1316847, DOI 10.1090/S0002-9947-1995-1316847-6 —, Colimits of sporadic triangles of groups, preprint.
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 4515-4531
- MSC: Primary 20F10; Secondary 20E08, 57M07
- DOI: https://doi.org/10.1090/S0002-9947-1995-1316846-4
- MathSciNet review: 1316846