Triangles of groups
HTML articles powered by AMS MathViewer
- by Andrew Chermak
- Trans. Amer. Math. Soc. 347 (1995), 4533-4558
- DOI: https://doi.org/10.1090/S0002-9947-1995-1316847-6
- PDF | Request permission
Abstract:
Given a certain commutative diagram of groups and monomorphisms, does there necessarily exist a group in which the given diagram is essentially a diagram of subgroups and inclusions? In general, the answer is negative, but J. Corson, and Gersten and Stallings have shown that in the case of a "non-spherical triangle" of groups the answer is positive. This paper improves on these results by weakening the non-sphericality requirement.References
- Roger Alperin and Hyman Bass, Length functions of group actions on $\Lambda$-trees, Combinatorial group theory and topology (Alta, Utah, 1984) Ann. of Math. Stud., vol. 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 265–378. MR 895622 David Benson, Conway’s group $C{o_3}$ and the Dickson invariants, Preprint, 1993.
- Andrew Chermak, $\textbf {R}$-trees, small cancellation, and convergence, Trans. Amer. Math. Soc. 347 (1995), no. 11, 4515–4531. MR 1316846, DOI 10.1090/S0002-9947-1995-1316846-4 —, Colimits of sporadic triangles of groups, preprint, 1994.
- Jon Michael Corson, Complexes of groups, Proc. London Math. Soc. (3) 65 (1992), no. 1, 199–224. MR 1162493, DOI 10.1112/plms/s3-65.1.199
- W. G. Dwyer and C. W. Wilkerson, A new finite loop space at the prime two, J. Amer. Math. Soc. 6 (1993), no. 1, 37–64. MR 1161306, DOI 10.1090/S0894-0347-1993-1161306-9 D.M. Goldschmidt, Graphs and groups, Groups and Graphs: New Results and Methods, Birkhäuser Verlag, Basel, 1985.
- John W. Morgan and Peter B. Shalen, Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. (2) 120 (1984), no. 3, 401–476. MR 769158, DOI 10.2307/1971082
- Mark Ronan, Lectures on buildings, Perspectives in Mathematics, vol. 7, Academic Press, Inc., Boston, MA, 1989. MR 1005533
- Ronald Solomon, Finite groups with Sylow $2$-subgroups of type $3$, J. Algebra 28 (1974), 182–198. MR 344338, DOI 10.1016/0021-8693(74)90031-3
- John R. Stallings, Non-positively curved triangles of groups, Group theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 491–503. MR 1170374
- Jacques Tits, Sur le groupe des automorphismes d’un arbre, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 188–211 (French). MR 0299534
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 4533-4558
- MSC: Primary 20E06; Secondary 20F32, 57M07
- DOI: https://doi.org/10.1090/S0002-9947-1995-1316847-6
- MathSciNet review: 1316847