On invariants for $\omega _ 1$-separable groups
HTML articles powered by AMS MathViewer
- by Paul C. Eklof, Matthew Foreman and Saharon Shelah
- Trans. Amer. Math. Soc. 347 (1995), 4385-4402
- DOI: https://doi.org/10.1090/S0002-9947-1995-1316849-X
- PDF | Request permission
Abstract:
We study the classification of ${\omega _1}$-separable groups by using Ehrenfeucht-Fraïssé games and prove a strong classification result assuming PFA, and a strong non-structure theorem assuming $\diamondsuit$.References
- Paul C. Eklof, The structure of $\omega _{1}$-separable groups, Trans. Amer. Math. Soc. 279 (1983), no. 2, 497–523. MR 709565, DOI 10.1090/S0002-9947-1983-0709565-8
- Paul C. Eklof and Alan H. Mekler, Almost free modules, North-Holland Mathematical Library, vol. 46, North-Holland Publishing Co., Amsterdam, 1990. Set-theoretic methods. MR 1055083
- Tapani Hyttinen, Model theory for infinite quantifier languages, Fund. Math. 134 (1990), no. 2, 125–142. MR 1074640, DOI 10.4064/fm-134-2-125-142
- Tapani Hyttinen and Heikki Tuuri, Constructing strongly equivalent nonisomorphic models for unstable theories, Ann. Pure Appl. Logic 52 (1991), no. 3, 203–248. MR 1111753, DOI 10.1016/0168-0072(91)90031-G
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- Maaret Karttunen, Model theory for infinitely deep languages, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 50 (1984), 96. MR 761409
- Alan H. Mekler, Proper forcing and abelian groups, Abelian group theory (Honolulu, Hawaii, 1983) Lecture Notes in Math., vol. 1006, Springer, Berlin, 1983, pp. 285–303. MR 722625, DOI 10.1007/BFb0103709
- Alan H. Mekler, The structure of groups which are almost the direct sum of countable abelian groups, Trans. Amer. Math. Soc. 303 (1987), no. 1, 145–160. MR 896012, DOI 10.1090/S0002-9947-1987-0896012-2
- Alan Mekler, Saharon Shelah, and Jouko Väänänen, The Ehrenfeucht-Fraïssé-game of length $\omega _1$, Trans. Amer. Math. Soc. 339 (1993), no. 2, 567–580. MR 1191613, DOI 10.1090/S0002-9947-1993-1191613-1
- Alan Mekler and Juha Oikkonen, Abelian $p$-groups with no invariants, J. Pure Appl. Algebra 87 (1993), no. 1, 51–59. MR 1222176, DOI 10.1016/0022-4049(93)90068-5 J. Oikkonen, Enrenfeucht-Fraïssé-games and nonstructure theorems, preprint. J. Väänänen, Games and trees in infinitary logic: a survey, Quantifiers (M. Krynicki, M. Mostowski and L. Szczerba, eds.), Kluwer Acad. Publ. (to appear).
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 4385-4402
- MSC: Primary 03C55; Secondary 03C60, 03E35, 20K20
- DOI: https://doi.org/10.1090/S0002-9947-1995-1316849-X
- MathSciNet review: 1316849