## The Kechris-Woodin rank is finer than the Zalcwasser rank

HTML articles powered by AMS MathViewer

- by Haseo Ki PDF
- Trans. Amer. Math. Soc.
**347**(1995), 4471-4484 Request permission

## Abstract:

For each differentiable function $f$ on the unit circle, the Kechris-Woodin rank measures the failure of continuity of the derivative function $f’$ while the Zalcwasser rank measures how close the Fourier series of $f$ is to being a uniformly convergent series. We show that the Kechris-Woodin rank is finer than the Zalcwasser rank. Roughly speaking, small ranks mean the function is well behaved and big ranks imply bad behavior. For each countable ordinal, we explicitly construct a continuous function with everywhere convergent Fourier series such that the Zalcwasser rank of the function is bigger than the ordinal.## References

- M. Ajtai and A. S. Kechris,
*The set of continuous functions with everywhere convergent Fourier series*, Trans. Amer. Math. Soc.**302**(1987), no. 1, 207–221. MR**887506**, DOI 10.1090/S0002-9947-1987-0887506-4 - Andrew M. Bruckner,
*Differentiation of real functions*, Lecture Notes in Mathematics, vol. 659, Springer, Berlin, 1978. MR**507448** - Yitzhak Katznelson,
*An introduction to harmonic analysis*, Second corrected edition, Dover Publications, Inc., New York, 1976. MR**0422992** - Alexander S. Kechris and W. Hugh Woodin,
*Ranks of differentiable functions*, Mathematika**33**(1986), no. 2, 252–278 (1987). MR**882498**, DOI 10.1112/S0025579300011244 - Yiannis N. Moschovakis,
*Descriptive set theory*, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR**561709** - T. I. Ramsamujh,
*Three ordinal ranks for the set of differentiable functions*, J. Math. Anal. Appl.**158**(1991), no. 2, 539–555. MR**1117581**, DOI 10.1016/0022-247X(91)90255-X
A. Zalcwasser, - A. Zygmund,
*Trigonometric series. 2nd ed. Vols. I, II*, Cambridge University Press, New York, 1959. MR**0107776**

*Sur une propriété du champes des fonctions continus*, Studia Math.

**2**(1930), 63-67.

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**347**(1995), 4471-4484 - MSC: Primary 04A15; Secondary 26A21, 26A24, 42A20
- DOI: https://doi.org/10.1090/S0002-9947-1995-1321581-2
- MathSciNet review: 1321581