On the set of periods for $\sigma$ maps
HTML articles powered by AMS MathViewer
- by M. Carme Leseduarte and Jaume Llibre
- Trans. Amer. Math. Soc. 347 (1995), 4899-4942
- DOI: https://doi.org/10.1090/S0002-9947-1995-1316856-7
- PDF | Request permission
Abstract:
Let $\sigma$ be the topological graph shaped like the letter $\sigma$. We denote by $0$ the unique branching point of $\sigma$, and by ${\mathbf {O}}$ and ${\mathbf {I}}$ the closures of the components of $\sigma \backslash \{ 0\}$ homeomorphics to the circle and the interval, respectively. A continuous map from $\sigma$ into itself satisfying that $f$ has a fixed point in ${\mathbf {O}}$, or $f$ has a fixed point and $f(0) \in {\mathbf {I}}$ is called a $\sigma$ map. These are the continuous self-maps of $\sigma$ whose sets of periods can be studied without the notion of rotation interval. We characterize the sets of periods of all $\sigma$ maps.References
- Lluís Alsedà, Jaume Llibre, and MichałMisiurewicz, Periodic orbits of maps of $Y$, Trans. Amer. Math. Soc. 313 (1989), no. 2, 475–538. MR 958882, DOI 10.1090/S0002-9947-1989-0958882-0 —, Combinatorial dynamics in dimension one, Advanced Series in Nonlinear Dynamics, Vol. 5, World Scientific, 1993.
- Stewart Baldwin, An extension of Šarkovskiĭ’s theorem to the $n\text {-od}$, Ergodic Theory Dynam. Systems 11 (1991), no. 2, 249–271. MR 1116640, DOI 10.1017/S0143385700006131
- Louis Block, Periods of periodic points of maps of the circle which have a fixed point, Proc. Amer. Math. Soc. 82 (1981), no. 3, 481–486. MR 612745, DOI 10.1090/S0002-9939-1981-0612745-7
- Louis Block, John Guckenheimer, MichałMisiurewicz, and Lai Sang Young, Periodic points and topological entropy of one-dimensional maps, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) Lecture Notes in Math., vol. 819, Springer, Berlin, 1980, pp. 18–34. MR 591173 J. Llibre, J. Paraños and A. Rodríguez, Sets of periods for maps on connected graphs with zero Euler characteristic having all branching ponits fixed, Preprint. X. Paraños, Estructura periódica de aplicacións contínuas dun grafo non contráctil, Thesis, Universidade de Santiago de Compostela, 1993. W. Rudin, Principles of mathematical analysis, McGraw-Hill Internat. Eds. Math. Ser., McGraw-Hill, 1987.
- O. M. Šarkovs′kiĭ, Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. Ž. 16 (1964), 61–71 (Russian, with English summary). MR 0159905
- Philip D. Straffin Jr., Periodic points of continuous functions, Math. Mag. 51 (1978), no. 2, 99–105. MR 498731, DOI 10.2307/2690145
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 4899-4942
- MSC: Primary 58F20; Secondary 54H20
- DOI: https://doi.org/10.1090/S0002-9947-1995-1316856-7
- MathSciNet review: 1316856