Periodic orbits of $n$-body type problems: the fixed period case
HTML articles powered by AMS MathViewer
- by Hasna Riahi
- Trans. Amer. Math. Soc. 347 (1995), 4663-4685
- DOI: https://doi.org/10.1090/S0002-9947-1995-1316861-0
- PDF | Request permission
Abstract:
This paper gives a proof of the existence and multiplicity of periodic solutions to Hamiltonian systems of the form \[ ({\text {A}})\quad {\text { }}\left \{ {\begin {array}{*{20}{c}} {{m_i}{{\ddot q}_i} + \frac {{\partial V}} {{\partial {q_i}}}(t,q) = 0} \\ {q(t + T) = q(t),\quad \forall t \in \Re .} \\ \end {array} } \right .\] where ${q_i} \in {\Re ^\ell },\ell \geqslant 3,1 \leqslant i \leqslant n,q = ({q_1}, \ldots ,{q_n})$ and with ${V_{ij}}(t,\xi )$ $T$-periodic in $t$ and singular in $\xi$ at $\xi = 0$ Under additional hypotheses on $V$, when (A) is posed as a variational problem, the corresponding functional, $I$, is shown to have an unbounded sequence of critical values if the singularity of $V$ at $0$ is strong enough. The critical points of $I$ are classical $T$-periodic solutions of (A). Then, assuming that $I$ has only non-degenerate critical points, up to translations, Morse type inequalities are proved and used to show that the number of critical points with a fixed Morse index $k$ grows exponentially with $k$, at least when $k \equiv 0,1( \mod \ell - 2)$. The proof is based on the study of the critical points at infinity done by the author in a previous paper and generalizes the topological arguments used by A. Bahri and P. Rabinowitz in their study of the $3$-body problem. It uses a recent result of E. Fadell and S. Husseini on the homology of free loop spaces on configuration spaces. The detailed proof is given for the $4$-body problem then generalized to the $n$-body problem.References
- Antonio Ambrosetti and Vittorio Coti Zelati, Critical points with lack of compactness and singular dynamical systems, Ann. Mat. Pura Appl. (4) 149 (1987), 237–259. MR 932787, DOI 10.1007/BF01773936
- Antonio Ambrosetti and Vittorio Coti Zelati, Perturbation of Hamiltonian systems with Keplerian potentials, Math. Z. 201 (1989), no. 2, 227–242. MR 997224, DOI 10.1007/BF01160679 A. Bahri, Thèse de Doctorat d’Etat, Univ. P. et M. Curie, Paris, 1981.
- A. Bahri and H. Berestycki, Forced vibrations of superquadratic Hamiltonian systems, Acta Math. 152 (1984), no. 3-4, 143–197. MR 741053, DOI 10.1007/BF02392196
- Abbas Bahri and Paul H. Rabinowitz, A minimax method for a class of Hamiltonian systems with singular potentials, J. Funct. Anal. 82 (1989), no. 2, 412–428. MR 987301, DOI 10.1016/0022-1236(89)90078-5
- A. Bahri and P. H. Rabinowitz, Periodic solutions of Hamiltonian systems of $3$-body type, Ann. Inst. H. Poincaré C Anal. Non Linéaire 8 (1991), no. 6, 561–649. MR 1145561, DOI 10.1016/S0294-1449(16)30252-9
- Vittorio Coti Zelati, Periodic solutions for $N$-body type problems, Ann. Inst. H. Poincaré C Anal. Non Linéaire 7 (1990), no. 5, 477–492 (English, with French summary). MR 1138534, DOI 10.1016/S0294-1449(16)30288-8
- Marco Degiovanni and Fabio Giannoni, Dynamical systems with Newtonian type potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), no. 3, 467–494 (1989). MR 1015804
- Albrecht Dold, Lectures on algebraic topology, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 200, Springer-Verlag, Berlin-New York, 1980. MR 606196 E. Fadell and S. Husseini, On the growth properties of the homology of free loop spaces on configuration spaces, Proc. Conf. on Non Linear Analysis, Florida, 1992.
- William B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc. 204 (1975), 113–135. MR 377983, DOI 10.1090/S0002-9947-1975-0377983-1
- Carlo Greco, Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Anal. 12 (1988), no. 3, 259–269. MR 928560, DOI 10.1016/0362-546X(88)90112-5
- Olof Hanner, Some theorems on absolute neighborhood retracts, Ark. Mat. 1 (1951), 389–408. MR 43459, DOI 10.1007/BF02591376
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR 0448362, DOI 10.1007/978-1-4684-9449-5
- A. Marino and G. Prodi, Metodi perturbativi nella teoria di Morse, Boll. Un. Mat. Ital. (4) 11 (1975), no. 3, suppl., 1–32 (Italian, with English summary). Collection of articles dedicated to Giovanni Sansone on the occasion of his eighty-fifth birthday. MR 0418150
- Pietro Majer and Susanna Terracini, Periodic solutions to some problems of $n$-body type, Arch. Rational Mech. Anal. 124 (1993), no. 4, 381–404. MR 1240581, DOI 10.1007/BF00375608 —, Multiple periodic solutions to some $n$-body type problems via a collision index, to appear. H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Libr. Albert Blanchard, Paris, 1987.
- Hasna Riahi, Study of the critical points at infinity arising from the failure of the Palais-Smale condition for $n$-body type problems, Mem. Amer. Math. Soc. 138 (1999), no. 658, viii+112. MR 1445492, DOI 10.1090/memo/0658
- Micheline Vigué-Poirrier, Homotopie rationnelle et croissance du nombre de géodésiques fermées, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 3, 413–431 (French). MR 777376, DOI 10.24033/asens.1477
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 4663-4685
- MSC: Primary 58F22; Secondary 34C25, 58E05, 70F10
- DOI: https://doi.org/10.1090/S0002-9947-1995-1316861-0
- MathSciNet review: 1316861