Invertibility preserving linear maps on $\mathcal {L}(X)$
HTML articles powered by AMS MathViewer
- by A. R. Sourour
- Trans. Amer. Math. Soc. 348 (1996), 13-30
- DOI: https://doi.org/10.1090/S0002-9947-96-01428-6
- PDF | Request permission
Abstract:
For Banach spaces $X$ and $Y$, we show that every unital bijective invertibility preserving linear map between $\mathcal L(X)$ and $\mathcal L(Y)$ is a Jordan isomorphism. The same conclusion holds for maps between $\mathbb CI+ \mathcal K(X)$ and $\mathbb CI+\mathcal K(Y)$.References
- Bernard Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Mathematics, vol. 735, Springer, Berlin, 1979 (French). MR 549769, DOI 10.1007/BFb0064204
- Frank F. Bonsall and John Duncan, Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR 0423029, DOI 10.1007/978-3-642-65669-9
- Arlen Brown and Carl Pearcy, Structure of commutators of operators, Ann. of Math. (2) 82 (1965), 112–127. MR 178354, DOI 10.2307/1970564
- M. D. Choi, D. Hadwin, E. Nordgren, H. Radjavi, and P. Rosenthal, On positive linear maps preserving invertibility, J. Funct. Anal. 59 (1984), no. 3, 462–469. MR 769376, DOI 10.1016/0022-1236(84)90060-0
- De Guang Han and Balmohan V. Limaye, On a spectral characterization of rank one matrices, Linear Algebra Appl. 143 (1991), 1–6. MR 1077720, DOI 10.1016/0024-3795(91)90002-E
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- Andrew M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171–172. MR 213878, DOI 10.1007/BF02788714
- I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, Ill.-London, 1969. MR 0271135
- Ali A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), no. 2, 255–261. MR 832991, DOI 10.1016/0022-1236(86)90073-X
- J.-P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339–343. MR 226408, DOI 10.4064/sm-29-3-339-343
- Irving Kaplansky, Algebraic and analytic aspects of operator algebras, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 1, American Mathematical Society, Providence, R.I., 1970. MR 0312283, DOI 10.1090/cbms/001
- David R. Larson and Ahmed R. Sourour, Local derivations and local automorphisms of ${\scr B}(X)$, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 187–194. MR 1077437, DOI 10.1090/pspum/051.2/1077437
- Balmohan V. Limaye, A spectral characterization of operators having rank $k$, Linear Algebra Appl. 143 (1991), 57–66. MR 1077724, DOI 10.1016/0024-3795(91)90006-I
- Marvin Marcus and Roger Purves, Linear transformations on algebras of matrices: the invariance of the elementary symmetric functions, Canadian J. Math. 11 (1959), 383–396. MR 105425, DOI 10.4153/CJM-1959-039-4
- M. Roitman and Y. Sternfeld, When is a linear functional multiplicative?, Trans. Amer. Math. Soc. 267 (1981), no. 1, 111–124. MR 621976, DOI 10.1090/S0002-9947-1981-0621976-6
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- B. Russo, Linear mappings of operator algebras, Proc. Amer. Math. Soc. 17 (1966), 1019–1022. MR 198269, DOI 10.1090/S0002-9939-1966-0198269-4
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039, DOI 10.1007/978-3-642-65970-6
- A. R. Sourour, Spectrum-preserving linear maps on the algebra of regular operators, Aspects of positivity in functional analysis (Tübingen, 1985) North-Holland Math. Stud., vol. 122, North-Holland, Amsterdam, 1986, pp. 255–259. MR 859735
- A. R. Sourour, A factorization theorem for matrices, Linear and Multilinear Algebra 19 (1986), no. 2, 141–147. MR 846549, DOI 10.1080/03081088608817711
- E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford Univ. Press, Oxford, 1939
- W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), 83–85. MR 229042, DOI 10.4064/sm-30-1-83-85
Bibliographic Information
- A. R. Sourour
- Affiliation: Department of Mathematics and Statistics, University of Victoria, Victoria, B.C. V8W 3P4, Canada
- Received by editor(s): October 26, 1993
- Additional Notes: Supported in part by grants from the Natural Sciences and Engineering Research Council (Canada), and from the University of Victoria
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 13-30
- MSC (1991): Primary 47B48, 47B49; Secondary 47A10
- DOI: https://doi.org/10.1090/S0002-9947-96-01428-6
- MathSciNet review: 1311919