Powers in Finitely Generated Groups
HTML articles powered by AMS MathViewer
- by E. Hrushovski, P. H. Kropholler, A. Lubotzky and A. Shalev
- Trans. Amer. Math. Soc. 348 (1996), 291-304
- DOI: https://doi.org/10.1090/S0002-9947-96-01456-0
- PDF | Request permission
Abstract:
In this paper we study the set $\Gamma ^n$ of $n^{th}$-powers in certain finitely generated groups $\Gamma$. We show that, if $\Gamma$ is soluble or linear, and $\Gamma ^n$ contains a finite index subgroup, then $\Gamma$ is nilpotent-by-finite. We also show that, if $\Gamma$ is linear and $\Gamma ^n$ has finite index (i.e. $\Gamma$ may be covered by finitely many translations of $\Gamma ^n$), then $\Gamma$ is soluble-by-finite. The proof applies invariant measures on amenable groups, number-theoretic results concerning the $S$-unit equation, the theory of algebraic groups and strong approximation results for linear groups in arbitrary characteristic.References
- J.-H. Evertse, On equations in $S$-units and the Thue-Mahler equation, Invent. Math. 75 (1984), no. 3, 561–584. MR 735341, DOI 10.1007/BF01388644
- J.-H. Evertse, K. Győry, C. L. Stewart, and R. Tijdeman, On $S$-unit equations in two unknowns, Invent. Math. 92 (1988), no. 3, 461–477. MR 939471, DOI 10.1007/BF01393743
- J.-H. Evertse, K. Győry, C. L. Stewart, and R. Tijdeman, $S$-unit equations and their applications, New advances in transcendence theory (Durham, 1986) Cambridge Univ. Press, Cambridge, 1988, pp. 110–174. MR 971998
- J. R. J. Groves, Soluble groups with every proper quotient polycyclic, Illinois J. Math. 22 (1978), no. 1, 90–95. MR 474887
- V. S. Guba, A finitely generated complete group, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 5, 883–924 (Russian). MR 873654
- P. Hall, Some sufficient conditions for a group to be nilpotent, Illinois J. Math. 2 (1958), 787–801. MR 105441, DOI 10.1215/ijm/1255448649
- P. Hall, On the finiteness of certain soluble groups, Proc. London Math. Soc. (3) 9 (1959), 595–622. MR 110750, DOI 10.1112/plms/s3-9.4.595 E. Hrushovski, Strong approximation for linear groups in arbitrary characteristic, in preparation.
- Serge Lang, Integral points on curves, Inst. Hautes Études Sci. Publ. Math. 6 (1960), 27–43. MR 130219, DOI 10.1007/BF02698777
- John C. Lennox and James Wiegold, Converse of a theorem of Mal′cev on nilpotent groups, Math. Z. 139 (1974), 85–86. MR 360833, DOI 10.1007/BF01194147 A. I. Mal$’$cev, Homomorphisms onto finite groups, Ivanov. Gos. Ped. Inst. Uchen. Zap. Fiz.-Mat. Nauki 8 (1958), 49–60.
- R. C. Mason, Diophantine equations over function fields, London Mathematical Society Lecture Note Series, vol. 96, Cambridge University Press, Cambridge, 1984. MR 754559, DOI 10.1017/CBO9780511752490
- R. C. Mason, Norm form equations. III. Positive characteristic, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 3, 409–423. MR 830357, DOI 10.1017/S0305004100064355
- Madhav V. Nori, On subgroups of $\textrm {GL}_n(\textbf {F}_p)$, Invent. Math. 88 (1987), no. 2, 257–275. MR 880952, DOI 10.1007/BF01388909
- Derek J. S. Robinson and John S. Wilson, Soluble groups with many polycyclic quotients, Proc. London Math. Soc. (3) 48 (1984), no. 2, 193–229. MR 729068, DOI 10.1112/plms/s3-48.2.193
- T. N. Shorey and R. Tijdeman, Exponential Diophantine equations, Cambridge Tracts in Mathematics, vol. 87, Cambridge University Press, Cambridge, 1986. MR 891406, DOI 10.1017/CBO9780511566042
- Stan Wagon, The Banach-Tarski paradox, Encyclopedia of Mathematics and its Applications, vol. 24, Cambridge University Press, Cambridge, 1985. With a foreword by Jan Mycielski. MR 803509, DOI 10.1017/CBO9780511609596
- Boris Weisfeiler, Strong approximation for Zariski-dense subgroups of semisimple algebraic groups, Ann. of Math. (2) 120 (1984), no. 2, 271–315. MR 763908, DOI 10.2307/2006943
Bibliographic Information
- E. Hrushovski
- Affiliation: Department of Mathematics, Hebrew University, Jerusalem 91904, Israel
- P. H. Kropholler
- Affiliation: School of Mathematical Sciences, Queen Mary & Westfield College, Mile End Road, London E1 4NS, United Kingdom
- MR Author ID: 203863
- ORCID: 0000-0001-5460-1512
- A. Lubotzky
- Affiliation: Department of Mathematics, Hebrew University, Jerusalem 91904, Israel
- MR Author ID: 116480
- A. Shalev
- Affiliation: Department of Mathematics, Hebrew University, Jerusalem 91904, Israel
- MR Author ID: 228986
- ORCID: 0000-0001-9428-2958
- Received by editor(s): January 20, 1995
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 291-304
- MSC (1991): Primary 20G15, 20F16; Secondary 11D99, 20G40, 43A05
- DOI: https://doi.org/10.1090/S0002-9947-96-01456-0
- MathSciNet review: 1316851