Global smooth solutions for a class of parabolic integrodifferential equations
HTML articles powered by AMS MathViewer
- by Hans Engler
- Trans. Amer. Math. Soc. 348 (1996), 267-290
- DOI: https://doi.org/10.1090/S0002-9947-96-01472-9
- PDF | Request permission
Abstract:
The existence and uniqueness of smooth global large data solutions of a class of quasilinear partial integrodifferential equations in one space and one time dimension are proved, if the integral kernel behaves like $t^{-\alpha }$ near $t=0$ with $\alpha > 2/3$. An existence and regularity theorem for linear equations with variable coefficients that are related to this type is also proved in arbitrary space dimensions and with no restrictions for $\alpha$.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- Paul L. Butzer and Hubert Berens, Semi-groups of operators and approximation, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag New York, Inc., New York, 1967. MR 0230022, DOI 10.1007/978-3-642-46066-1
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275, DOI 10.1007/978-3-642-66451-9
- C. M. Dafermos and J. A. Nohel, A nonlinear hyperbolic Volterra equation in viscoelasticity, Contributions to analysis and geometry (Baltimore, Md., 1980) Johns Hopkins Univ. Press, Baltimore, Md., 1981, pp. 87–116. MR 648457
- C. M. Dafermos, Development of singularities in the motion of materials with fading memory, Arch. Rational Mech. Anal. 91 (1985), no. 3, 193–205. MR 806001, DOI 10.1007/BF00250741
- Constantine M. Dafermos, Estimates for conservation laws with little viscosity, SIAM J. Math. Anal. 18 (1987), no. 2, 409–421. MR 876280, DOI 10.1137/0518031
- G. Da Prato, M. Iannelli, and E. Sinestrari, Regularity of solutions of a class of linear integro-differential equations in Banach spaces, J. Integral Equations 8 (1985), no. 1, 27–40. MR 771750
- Klaus Deimling, Nichtlineare Gleichungen und Abbildungsgrade, Hochschultext [University Textbooks], Springer-Verlag, Berlin-New York, 1974 (German). MR 0500322, DOI 10.1007/978-3-642-65941-6
- Hans Engler, Weak solutions of a class of quasilinear hyperbolic integro-differential equations describing viscoelastic materials, Arch. Rational Mech. Anal. 113 (1990), no. 1, 1–38. MR 1079180, DOI 10.1007/BF00380814
- J. Horn, Über eine hypergeometrische Funktion zweier Veränderlichen, Monatsh. Math. Phys. 47 (1939), 359–379 (German). MR 91, DOI 10.1007/BF01695508
- Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR 0445088
- Rudolf Gorenflo and Sergio Vessella, Abel integral equations, Lecture Notes in Mathematics, vol. 1461, Springer-Verlag, Berlin, 1991. Analysis and applications. MR 1095269, DOI 10.1007/BFb0084665
- Gustaf Gripenberg, Nonexistence of smooth solutions for shearing flows in a nonlinear viscoelastic fluid, SIAM J. Math. Anal. 13 (1982), no. 6, 954–961. MR 674764, DOI 10.1137/0513066
- G. Gripenberg, S.-O. Londen, and O. Staffans, Volterra integral and functional equations, Encyclopedia of Mathematics and its Applications, vol. 34, Cambridge University Press, Cambridge, 1990. MR 1050319, DOI 10.1017/CBO9780511662805
- Gustaf Gripenberg, Global existence of solutions of Volterra integrodifferential equations of parabolic type, J. Differential Equations 102 (1993), no. 2, 382–390. MR 1216735, DOI 10.1006/jdeq.1993.1035
- Gustaf Gripenberg, On the uniqueness and nonuniqueness of weak solutions of hyperbolic-parabolic Volterra equations, Differential Integral Equations 7 (1994), no. 2, 509–522. MR 1255903
- Gustaf Gripenberg, Nonlinear Volterra equations of parabolic type due to singular kernels, J. Differential Equations 112 (1994), no. 1, 154–169. MR 1287555, DOI 10.1006/jdeq.1994.1098
- Gustaf Gripenberg, Weak solutions of hyperbolic-parabolic Volterra equations, Trans. Amer. Math. Soc. 343 (1994), no. 2, 675–694. MR 1216335, DOI 10.1090/S0002-9947-1994-1216335-0
- Harumi Hattori, Breakdown of smooth solutions in dissipative nonlinear hyperbolic equations, Quart. Appl. Math. 40 (1982/83), no. 2, 113–127. MR 666668, DOI 10.1090/S0033-569X-1982-0666668-X J. Heikonen, On the Existence of a Global Mild Solution for a Nonlinear Parabolic Integro- differential Equation, Licentiate Thesis, Helsinki Univ. of Technology, Espoo, Finland, 1993.
- W. J. Hrusa and M. Renardy, On a class of quasilinear partial integro-differential equations with singular kernels, J. Differential Equations 64 (1986), no. 2, 195–220. MR 851911, DOI 10.1016/0022-0396(86)90087-2
- William J. Hrusa and Michael Renardy, A model equation for viscoelasticity with a strongly singular kernel, SIAM J. Math. Anal. 19 (1988), no. 2, 257–269. MR 930025, DOI 10.1137/0519019
- Sergiu Klainerman and Andrew Majda, Formation of singularities for wave equations including the nonlinear vibrating string, Comm. Pure Appl. Math. 33 (1980), no. 3, 241–263. MR 562736, DOI 10.1002/cpa.3160330304
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 (French). MR 0259693
- Stig-Olof Londen, An existence result on a Volterra equation in a Banach space, Trans. Amer. Math. Soc. 235 (1978), 285–304. MR 473770, DOI 10.1090/S0002-9947-1978-0473770-7
- Stig-Olof Londen, Some existence results for a nonlinear hyperbolic integrodifferential equation with singular kernel, J. Integral Equations Appl. 3 (1991), no. 1, 3–30. MR 1094929, DOI 10.1216/jiea/1181075599
- R. C. MacCamy, Existence uniqueness and stability of solutions of the equation $u_{tt}=(\partial /\partial x)(\sigma (u_{x})+\lambda (u_{x})u_{tt})$, Indiana Univ. Math. J. 20 (1970/71), 231–238. MR 265790, DOI 10.1512/iumj.1970.20.20021
- Jan Prüss and Hermann Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990), no. 3, 429–452. MR 1038710, DOI 10.1007/BF02570748
- Philippe Clément, Ben de Pagter, and Enzo Mitidieri (eds.), Semigroup theory and evolution equations, Lecture Notes in Pure and Applied Mathematics, vol. 135, Marcel Dekker, Inc., New York, 1991. MR 1164637
- Jan Prüss, Evolutionary integral equations and applications, Monographs in Mathematics, vol. 87, Birkhäuser Verlag, Basel, 1993. MR 1238939, DOI 10.1007/978-3-0348-8570-6
- Michael Renardy, William J. Hrusa, and John A. Nohel, Mathematical problems in viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 35, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. MR 919738
- Michael Renardy, Coercive estimates and existence of solutions for a model of one-dimensional viscoelasticity with a nonintegrable memory function, J. Integral Equations Appl. 1 (1988), no. 1, 7–16. MR 955160, DOI 10.1216/JIE-1988-1-1-7
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Bibliographic Information
- Hans Engler
- MR Author ID: 63565
- Email: engler@guvax.acc.georgetown.edu
- Received by editor(s): September 22, 1994
- Received by editor(s) in revised form: January 13, 1995
- Additional Notes: Supported by the National Science Foundation under grant # DMS-9003543
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 267-290
- MSC (1991): Primary 45K05
- DOI: https://doi.org/10.1090/S0002-9947-96-01472-9
- MathSciNet review: 1321573