The spaces of index one minimal surfaces and stable constant mean curvature surfaces embedded in flat three manifolds
HTML articles powered by AMS MathViewer
- by Manuel Ritoré and Antonio Ros
- Trans. Amer. Math. Soc. 348 (1996), 391-410
- DOI: https://doi.org/10.1090/S0002-9947-96-01496-1
- PDF | Request permission
Abstract:
It is proved that the spaces of index one minimal surfaces and stable constant mean curvature surfaces with genus greater than one in (non fixed) flat three manifolds are compact in a strong sense: given a sequence of any of the above surfaces we can extract a convergent subsequence of both the surfaces and the ambient manifolds in the $C^k$ topology. These limits preserve the topological type of the surfaces and the affine diffeomorphism class of the ambient manifolds. Some applications to the isoperimetric problem are given.References
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Hiroshi Mori, On surfaces of right helicoid type in $H^{3}$, Bol. Soc. Brasil. Mat. 13 (1982), no. 2, 57–62. MR 735120, DOI 10.1007/BF02584676
- J. Lucas Barbosa, Manfredo do Carmo, and Jost Eschenburg, Stability of hypersurfaces of constant mean curvature in Riemannian manifolds, Math. Z. 197 (1988), no. 1, 123–138. MR 917854, DOI 10.1007/BF01161634
- M. do Carmo and C. K. Peng, Stable complete minimal surfaces in $\textbf {R}^{3}$ are planes, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 6, 903–906. MR 546314, DOI 10.1090/S0273-0979-1979-14689-5
- A. El Soufi and S. Ilias, Majoration de la seconde valeur propre d’un opérateur de Schrödinger sur une variété compacte et applications, J. Funct. Anal. 103 (1992), no. 2, 294–316 (French, with English summary). MR 1151550, DOI 10.1016/0022-1236(92)90123-Z
- D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math. 82 (1985), no. 1, 121–132. MR 808112, DOI 10.1007/BF01394782
- Doris Fischer-Colbrie and Richard Schoen, The structure of complete stable minimal surfaces in $3$-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199–211. MR 562550, DOI 10.1002/cpa.3160330206
- Katia Rosenvald Frensel, Stable complete surfaces with constant mean curvature, An. Acad. Brasil. Ciênc. 60 (1988), no. 2, 115–117 (1989). MR 1000433
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Joel Hass, Jon T. Pitts, and J. H. Rubinstein, Existence of unstable minimal surfaces in manifolds with homology and applications to triply periodic minimal surfaces, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 147–162. MR 1216582, DOI 10.1090/pspum/054.1/1216582
- Ernst Heintze, Extrinsic upper bounds for $\lambda _1$, Math. Ann. 280 (1988), no. 3, 389–402. MR 936318, DOI 10.1007/BF01456332
- D. Hoffman, W.H. Meeks, Limits of minimal surfaces and Scherk’s second surface, Univ. Massachusetts.
- D. Hoffman and W. H. Meeks III, The strong halfspace theorem for minimal surfaces, Invent. Math. 101 (1990), no. 2, 373–377. MR 1062966, DOI 10.1007/BF01231506
- Hermann Karcher, The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions, Manuscripta Math. 64 (1989), no. 3, 291–357. MR 1003093, DOI 10.1007/BF01165824
- Nicholas J. Korevaar, Rob Kusner, and Bruce Solomon, The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom. 30 (1989), no. 2, 465–503. MR 1010168
- Francisco J. López and Antonio Ros, Complete minimal surfaces with index one and stable constant mean curvature surfaces, Comment. Math. Helv. 64 (1989), no. 1, 34–43. MR 982560, DOI 10.1007/BF02564662
- William H. Meeks III, The theory of triply periodic minimal surfaces, Indiana Univ. Math. J. 39 (1990), no. 3, 877–936. MR 1078743, DOI 10.1512/iumj.1990.39.39043
- William H. Meeks III and Harold Rosenberg, The global theory of doubly periodic minimal surfaces, Invent. Math. 97 (1989), no. 2, 351–379. MR 1001845, DOI 10.1007/BF01389046
- William H. Meeks III and Harold Rosenberg, The geometry of periodic minimal surfaces, Comment. Math. Helv. 68 (1993), no. 4, 538–578. MR 1241472, DOI 10.1007/BF02565835
- Sebastián Montiel and Antonio Ros, Schrödinger operators associated to a holomorphic map, Global differential geometry and global analysis (Berlin, 1990) Lecture Notes in Math., vol. 1481, Springer, Berlin, 1991, pp. 147–174. MR 1178529, DOI 10.1007/BFb0083639
- Jon T. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, Mathematical Notes, vol. 27, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 626027, DOI 10.1515/9781400856459
- Jon T. Pitts and J. H. Rubinstein, Equivariant minimax and minimal surfaces in geometric three-manifolds, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 1, 303–309. MR 940493, DOI 10.1090/S0273-0979-1988-15652-2
- M. Ritoré, Complete orientable index one minimal surfaces embedded in complete orientable flat three manifolds, preprint, Univ. Granada, 1994.
- Manuel Ritoré and Antonio Ros, Stable constant mean curvature tori and the isoperimetric problem in three space forms, Comment. Math. Helv. 67 (1992), no. 2, 293–305. MR 1161286, DOI 10.1007/BF02566501
- Marty Ross, Schwarz’ $P$ and $D$ surfaces are stable, Differential Geom. Appl. 2 (1992), no. 2, 179–195. MR 1245555, DOI 10.1016/0926-2245(92)90032-I
- Richard M. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), no. 4, 791–809 (1984). MR 730928
- Alexandre M. Da Silveira, Stability of complete noncompact surfaces with constant mean curvature, Math. Ann. 277 (1987), no. 4, 629–638. MR 901709, DOI 10.1007/BF01457862
- B. White, Curvature estimates and compactness theorems in $3$-manifolds for surfaces that are stationary for parametric elliptic functionals, Invent. Math. 88 (1987), no. 2, 243–256. MR 880951, DOI 10.1007/BF01388908
- J.A. Wolf, Spaces of constant curvature, 1st ed., Publish or Perish, Inc., 1984.
- Shing-Tung Yau, Nonlinear analysis in geometry, Enseign. Math. (2) 33 (1987), no. 1-2, 109–158. MR 896385
Bibliographic Information
- Manuel Ritoré
- Affiliation: Departamento de Geometría y Topología Universidad de Granada E–18071, Granada, Spain
- Email: mritore@ugr.es
- Antonio Ros
- Affiliation: Departamento de Geometría y Topología Universidad de Granada E–18071, Granada, Spain
- Email: aros@ugr.es
- Received by editor(s): November 18, 1994
- Received by editor(s) in revised form: March 27, 1995
- Additional Notes: Both authors partially supported by DGICYT grant PB91–0731
- Communicated by: Wolmer V. Vasconecelos
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 391-410
- MSC (1991): Primary 53A10; Secondary 49Q20
- DOI: https://doi.org/10.1090/S0002-9947-96-01496-1
- MathSciNet review: 1322955