Complex convexity in Lebesgue-Bochner Function Spaces
HTML articles powered by AMS MathViewer
- by Patrick N. Dowling, Zhibao Hu and Douglas Mupasiri
- Trans. Amer. Math. Soc. 348 (1996), 127-139
- DOI: https://doi.org/10.1090/S0002-9947-96-01508-5
- PDF | Request permission
Abstract:
Complex geometric properties of continuously quasi-normed spaces are introduced and their relationship to their analogues in real Banach spaces is discussed. It is shown that these properties lift from a continuously quasi-normed space $X$ to $L^p(\mu , X)$, for $0 < p < \infty$. Local versions of these properties and results are also considered.References
- William J. Davis, D. J. H. Garling, and Nicole Tomczak-Jaegermann, The complex convexity of quasinormed linear spaces, J. Funct. Anal. 55 (1984), no. 1, 110–150. MR 733036, DOI 10.1016/0022-1236(84)90021-1
- S. J. Dilworth, Complex convexity and the geometry of Banach spaces, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 3, 495–506. MR 830363, DOI 10.1017/S0305004100064446
- Patrick N. Dowling, Zhibao Hu, and Mark A. Smith, Geometry of spaces of vector-valued harmonic functions, Canad. J. Math. 46 (1994), no. 2, 274–283. MR 1271214, DOI 10.4153/CJM-1994-012-1
- Peter Greim, An extremal vector-valued $L^{p}$-function taking no extremal vectors as values, Proc. Amer. Math. Soc. 84 (1982), no. 1, 65–68. MR 633279, DOI 10.1090/S0002-9939-1982-0633279-0
- Peter Greim, A note on strong extreme and strongly exposed points in Bochner $L^p$-spaces, Proc. Amer. Math. Soc. 93 (1985), no. 1, 65–66. MR 766528, DOI 10.1090/S0002-9939-1985-0766528-1 Z. Hu and D.Mupasiri, Complex strongly extreme points in quasi-normed spaces, preprint (1994).
- Jerry A. Johnson, Extreme measurable selections, Proc. Amer. Math. Soc. 44 (1974), 107–112. MR 341068, DOI 10.1090/S0002-9939-1974-0341068-5 D. Mupasiri, Some results on complex convexity and the geometry of complex vector spaces, Dissertation, Northern Illinois University (1992).
- Mark A. Smith, Strongly extreme points in $L^p(\mu , X)$, Rocky Mountain J. Math. 16 (1986), no. 1, 1–5. MR 829190, DOI 10.1216/RMJ-1986-16-1-1
- Mark A. Smith, Rotundity and extremity in $l^p(X_i)$ and $L^p(\mu ,X)$, Geometry of normed linear spaces (Urbana-Champaign, Ill., 1983) Contemp. Math., vol. 52, Amer. Math. Soc., Providence, RI, 1986, pp. 143–162. MR 840706, DOI 10.1090/conm/052/840706
- Mark A. Smith and Barry Turett, Rotundity in Lebesgue-Bochner function spaces, Trans. Amer. Math. Soc. 257 (1980), no. 1, 105–118. MR 549157, DOI 10.1090/S0002-9947-1980-0549157-4
- K. Sundaresan, Extreme points of the unit cell in Lebesgue-Bochner function spaces. I, Proc. Amer. Math. Soc. 23 (1969), 179–184. MR 247453, DOI 10.1090/S0002-9939-1969-0247453-2
- Kondagunta Sundaresan, Extreme points of the unit cell in Lebesgue-Bochner function spaces, Colloq. Math. 22 (1970), 111–119. MR 276753, DOI 10.4064/cm-22-1-111-119
- Edward Thorp and Robert Whitley, The strong maximum modulus theorem for analytic functions into a Banach space, Proc. Amer. Math. Soc. 18 (1967), 640–646. MR 214794, DOI 10.1090/S0002-9939-1967-0214794-2
- Quan Hua Xu, Inégalités pour les martingales de Hardy et renormage des espaces quasi-normés, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 14, 601–604 (French, with English summary). MR 941635
- Quan Hua Xu, Convexités uniformes et inégalités de martingales, Math. Ann. 287 (1990), no. 2, 193–211 (French). MR 1054563, DOI 10.1007/BF01446887
Bibliographic Information
- Patrick N. Dowling
- Email: pndowling@miavx1.acs.muohio.edu
- Zhibao Hu
- Affiliation: Department of Mathematics and Statistics, Miami University, Oxford, Ohio 45056
- Address at time of publication: Department of Mathematics, El Paso Community College, P.O. Box 20500, Elpaso, Texas 79998
- Email: davidhu@laguna.epcc.edu
- Douglas Mupasiri
- Email: mupasiri@math.uni.edu
- Received by editor(s): July 22, 1994
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 127-139
- MSC (1991): Primary 28A05, 46E40
- DOI: https://doi.org/10.1090/S0002-9947-96-01508-5
- MathSciNet review: 1327255