On the Well-Posedness of the Kirchhoff String
HTML articles powered by AMS MathViewer
- by Alberto Arosio and Stefano Panizzi
- Trans. Amer. Math. Soc. 348 (1996), 305-330
- DOI: https://doi.org/10.1090/S0002-9947-96-01532-2
- PDF | Request permission
Abstract:
Let us consider the Cauchy problem for the quasilinear hyperbolic integro-differential equation \begin{align*} u_{tt} - m \left (\int _{_{\partial {\Omega }}} |\nabla _{x}u|^{2} dx \right ) \delta _{x}u= f(x,t) &&& (x\in \Omega , t > 0),\\ u(\cdot ,t)_{|\partial \Omega } =0 &&& (t\geq 0), \end{align*} where $\Omega$ is an open subset of $\mathbb {R}^{n}$ and $m$ is a positive function of one real variable which is continuously differentiable. We prove the well-posedness in the Hadamard sense (existence, uniqueness and continuous dependence of the local solution upon the initial data) in Sobolev spaces of low order.References
- W. F. Ames, Nonlinear partial differential equations in engineering, Academic Press, New York-London, 1965. MR 0210342
- A. Arosio, Averaged evolution equations. The Kirchhoff string and its treatment in scales of Banach spaces, expanded text of a lecture given in “$2^{\circ }$ workshop on functional-analytic methods in complex analysis ” (Trieste, 1993), W. Tutschke ed., World Scientific, Singapore (to appear)
- A. Arosio and S. Garavaldi, On the mildly degenerate Kirchhoff string, Math. Methods Appl. Sci. 14 (1991), no. 3, 177–195. MR 1099324, DOI 10.1002/mma.1670140303
- A. Arosio and S. Spagnolo, Global solutions to the Cauchy problem for a nonlinear hyperbolic equation, Nonlinear partial differential equations and their applications. Collège de France seminar, Vol. VI (Paris, 1982/1983) Res. Notes in Math., vol. 109, Pitman, Boston, MA, 1984, pp. 1–26. MR 772234
- Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 0000002
- Norman Bazley and Horst Lange, The original Schrödinger wave equation revisited, Appl. Anal. 21 (1986), no. 3, 225–233. MR 840314, DOI 10.1080/00036818608839593
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- P. D’Ancona & S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108 (1992), 247-262; On an abstract weakly hyperbolic equation modelling the nonlinear vibrating string, in “Developments in partial differential equations and applications to mathematical physics” (Proc.: Ferrara, 1991), G. Buttazzo, G. P. Galdi & L. Zanghirati eds., Plenum Press, 1993
- P. D’Ancona & S. Spagnolo, A class of nonlinear hyperbolic problems with global solutions, Arch. Rat. Mech. Anal. 124 (1993), 201–219
- R. W. Dickey, Infinite systems of nonlinear oscillation equations related to the string, Proc. Amer. Math. Soc. 23 (1969), 459–468. MR 247189, DOI 10.1090/S0002-9939-1969-0247189-8
- R. W. Dickey, The initial value problem for a nonlinear semi-infinite string, Proc. Roy. Soc. Edinburgh Sect. A 82 (1978/79), no. 1-2, 19–26. MR 524669, DOI 10.1017/S0308210500011008
- Yukiyoshi Ebihara, On the existence of local smooth solutions for some degenerate quasilinear hyperbolic equations, An. Acad. Brasil. Ciênc. 57 (1985), no. 2, 145–152. MR 825353
- R. H. J. Germay, Généralisation de l’équation de Hesse, Ann. Soc. Sci. Bruxelles Sér. I 59 (1939), 139–144 (French). MR 86
- Daisuke Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order, Proc. Japan Acad. 43 (1967), 82–86. MR 216336
- S. Garavaldi, Su un modello integrodifferenziale non lineare della corda/membrana vibrante, Tesi di Laurea, Univ. Parma, December 1989
- J. M. Greenberg and S. C. Hu, The initial value problem for a stretched string, Quart. Appl. Math. 38 (1980/81), no. 3, 289–311. MR 592197, DOI 10.1090/S0033-569X-1980-0592197-8
- Tosio Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal. 58 (1975), no. 3, 181–205. MR 390516, DOI 10.1007/BF00280740
- Tosio Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Lecture Notes in Math., Vol. 448, Springer, Berlin, 1975, pp. 25–70. MR 0407477
- T. Kato, Abstract differential equations and nonlinear mixed problems, Lezioni Fermiane. [Fermi Lectures], Scuola Normale Superiore, Pisa; Accademia Nazionale dei Lincei, Rome, 1985. MR 930267
- Hans Kauderer, Nichtlineare Mechanik, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958 (German). MR 0145709, DOI 10.1007/978-3-642-92733-1
- G. Kirchhoff, Vorlesungen ober mathematische Physik: Mechanik, ch. 29 §7, Teubner, Leipzig, 1876
- Guilherme de la Penha and Luiz Adauto J. Medeiros (eds.), Contemporary developments in continuum mechanics and partial differential equations, North-Holland Mathematics Studies, vol. 30, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 519632
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR 0247243
- Marivaldo Pereira Matos, Mathematical analysis of the nonlinear model for the vibrations of a string, Nonlinear Anal. 17 (1991), no. 12, 1125–1137. MR 1137898, DOI 10.1016/0362-546X(91)90232-P
- L. A. Medeiros and M. Milla Miranda, Solutions for the equation of nonlinear vibrations in Sobolev spaces of fractionary order, Mat. Apl. Comput. 6 (1987), no. 3, 257–276 (English, with Portuguese summary). MR 935676
- Gustavo Perla Menzala, On classical solutions of a quasilinear hyperbolic equation, Nonlinear Anal. 3 (1979), no. 5, 613–627. MR 541872, DOI 10.1016/0362-546X(79)90090-7
- R. Narasimha, Nonlinear vibration of an elastic string, J. Sound Vibration 8 (1968), 134–146 ZBL 164:267
- Ali Hasan Nayfeh and Dean T. Mook, Nonlinear oscillations, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1979. MR 549322
- T. Nishida, Nonlinear vibrations of an elastic string II, unpublished manuscript (1971–1978)
- Kenji Nishihara, On a global solution of some quasilinear hyperbolic equation, Tokyo J. Math. 7 (1984), no. 2, 437–459. MR 776949, DOI 10.3836/tjm/1270151737
- Donald W. Oplinger, Frequency response of a nonlinear stretched string, J. Acoust. Soc. Amer. 32 (1960), 1529–1538. MR 120900, DOI 10.1121/1.1907948
- S. I. Pohožaev, A certain class of quasilinear hyperbolic equations, Mat. Sb. (N.S.) 96(138) (1975), 152–166, 168 (Russian). MR 0369938
- S. I. Pokhozhaev, A quasilinear hyperbolic Kirchhoff equation, Differentsial′nye Uravneniya 21 (1985), no. 1, 101–108, 182 (Russian). MR 777786
- Pedro Humberto Rivera Rodríguez, On a nonlinear hyperbolic equation in Hilbert spaces, An. Acad. Brasil. Ciênc. 50 (1978), no. 2, 133–135. MR 0499575
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
- Yoshio Yamada, Some nonlinear degenerate wave equations, Nonlinear Anal. 11 (1987), no. 10, 1155–1168. MR 913675, DOI 10.1016/0362-546X(87)90004-6
- Taeko Yamazaki, On local solutions of some quasilinear degenerate hyperbolic equations, Funkcial. Ekvac. 31 (1988), no. 3, 439–457. MR 987797
Bibliographic Information
- Stefano Panizzi
- Email: panizzi@prmat.math.unipr.it
- Received by editor(s): April 25, 1994
- Received by editor(s) in revised form: January 30, 1995
- Additional Notes: The research was supported by the 40% funds of the Italian Ministero della Università e della Ricerca Scientifica e Tecnologica.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 305-330
- MSC (1991): Primary 35L70, 35B30; Secondary 34G20
- DOI: https://doi.org/10.1090/S0002-9947-96-01532-2
- MathSciNet review: 1333386