Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



An existence result for linear partial differential equations with $C^\infty$ coefficients in an algebra of generalized functions

Author: Todor Todorov
Journal: Trans. Amer. Math. Soc. 348 (1996), 673-689
MSC (1991): Primary 35A05, 35D05, 35E20, 46S10, 46S20
MathSciNet review: 1316863
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the existence of solutions for essentially all linear partial differential equations with $C^\infty$-coefficients in an algebra of generalized functions, defined in the paper. In particular, we show that H. Lewy’s equation has solutions whenever its right-hand side is a classical $C^\infty$-function.

References [Enhancements On Off] (What's this?)

  • N. Aronszajn, Preliminary notes for the talk “Traces of analytic solutions of the heat equation”, Colloque International CNRS sur les Équations aux DĂ©rivĂ©es Partielles LinĂ©aires (Univ. Paris-Sud, Orsay, 1972) Soc. Math. France, Paris, 1973, pp. 5–34. AstĂ©risque, 2 et 3. MR 0603289
  • M. S. Baouendi, Solvability of partial differential equations in the traces of analytic solutions of the heat equation, Amer. J. Math. 97 (1975), no. 4, 983–1005. MR 390464, DOI
  • Jean-François Colombeau, New generalized functions and multiplication of distributions, North-Holland Mathematics Studies, vol. 84, North-Holland Publishing Co., Amsterdam, 1984. Notas de MatemĂĄtica [Mathematical Notes], 90. MR 738781
  • ---, New general existence result for partial differential equations in the $C^\infty$ case, Universite de Bordeaux, preprint, 1984.
  • J. F. Colombeau, A. Heibig, and M. Oberguggenberger, Generalized solutions to partial differential equations of evolution type, Ecole Norm. Sup., 1991, preprint.
  • Jean-François Colombeau, Arnaud Heibig, and Michael Oberguggenberger, Le problĂšme de Cauchy dans un espace de fonctions gĂ©nĂ©ralisĂ©es. I, C. R. Acad. Sci. Paris SĂ©r. I Math. 317 (1993), no. 9, 851–855 (French, with English and French summaries). MR 1246652
  • Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
  • Yu. V. Egorov, On the theory of generalized functions, Uspekhi Mat. Nauk 45 (1990), no. 5(275), 3–40, 222 (Russian); English transl., Russian Math. Surveys 45 (1990), no. 5, 1–49. MR 1084986, DOI
  • Yu. V. Egorov, Generalized functions and linear differential equations, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2 (1990), 92–95 (Russian). MR 1064933
  • L. Ehrenpreis, Solutions of some problems of division III, Amer. J. Math. 78 (1956), p. 685.
  • A. Kaneko, Introduction to hyperfunctions, Mathematics and its Applications (Japanese Series), vol. 3, Kluwer Academic Publishers Group, Dordrecht; SCIPRESS, Tokyo, 1988. Translated from the Japanese by Y. Yamamoto. MR 1026013
  • H. Lewy, An example of a smooth linear partial differential equation without solution, Ann. of Math. 66 (1957).
  • Nigel Cutland (ed.), Nonstandard analysis and its applications, London Mathematical Society Student Texts, vol. 10, Cambridge University Press, Cambridge, 1988. Papers from a conference held at the University of Hull, Hull, 1986. MR 971063
  • Bernard Malgrange, Sur la propagation de la rĂ©gularitĂ© des solutions des Ă©quations Ă  coefficients constants, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.) 3(51) (1959), 433–440 (French). MR 161188
  • Edward Nelson, Internal set theory: a new approach to nonstandard analysis, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1165–1198. MR 469763, DOI
  • Abraham Robinson, Non-standard analysis, North-Holland Publishing Co., Amsterdam, 1966. MR 0205854
  • Elemer E. Rosinger, Nonlinear partial differential equations, North-Holland Mathematics Studies, vol. 164, North-Holland Publishing Co., Amsterdam, 1990. An algebraic view of generalized solutions. MR 1091547
  • M. Oberguggenberger, Multiplication of distributions and applications to partial differential equations, Pitman Research Notes in Mathematics Series, vol. 259, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992. MR 1187755
  • M. Oberguggenberger and E. E. Rosinger, Solution of continuous nonlinear PDEs through order completion, North-Holland Math. Studies, vol. 181, North-Holland, Amsterdam, 1994.
  • Pierre Schapira, Une Ă©quation aux dĂ©rivĂ©es partielles sans solutions dans l’espace des hyperfonctions, C. R. Acad. Sci. Paris SĂ©r. A-B 265 (1967), A665–A667 (French). MR 221060
  • L. Schwartz, Theorie des distributions I, II, Hermann, Paris, 1950, 1951.
  • Todor Todorov, Pointwise kernels of Schwartz distributions, Proc. Amer. Math. Soc. 114 (1992), no. 3, 817–819. MR 1081703, DOI
  • ---, An existence result for a class of partial differential equations with smooth coefficients, Advances in Analysis, Probability and Mathematical Physics; Contributions to Nonstandard Analysis, Vol. 314, (S. Albeverio, W. A. J. Luxemburg, M. P. H. Wolff, eds.), Kluwer Academic, Dordrecht, 1995, pp. 107–121.
  • François TrĂšves, On local solvability of linear partial differential equations, Bull. Amer. Math. Soc. 76 (1970), 552–571. MR 257550, DOI

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 35A05, 35D05, 35E20, 46S10, 46S20

Retrieve articles in all journals with MSC (1991): 35A05, 35D05, 35E20, 46S10, 46S20

Additional Information

Todor Todorov
Affiliation: Department of Mathematics, California Polytechnic State University, San Luis Obispo, California 93407

Keywords: Existence of generalized solutions, Schwartz distribution, nonstandard function, nonstandard functional analysis, nonstandard extension, transfer principle, saturation principle
Received by editor(s): March 7, 1994
Received by editor(s) in revised form: November 28, 1994
Article copyright: © Copyright 1996 American Mathematical Society