An existence result for linear partial differential equations with $C^\infty$ coefficients in an algebra of generalized functions
HTML articles powered by AMS MathViewer
- by Todor Todorov
- Trans. Amer. Math. Soc. 348 (1996), 673-689
- DOI: https://doi.org/10.1090/S0002-9947-96-01450-X
- PDF | Request permission
Abstract:
We prove the existence of solutions for essentially all linear partial differential equations with $C^\infty$-coefficients in an algebra of generalized functions, defined in the paper. In particular, we show that H. Lewyâs equation has solutions whenever its right-hand side is a classical $C^\infty$-function.References
- N. Aronszajn, Preliminary notes for the talk âTraces of analytic solutions of the heat equationâ, Colloque International CNRS sur les Ăquations aux DĂ©rivĂ©es Partielles LinĂ©aires (Univ. Paris-Sud, Orsay, 1972) AstĂ©risque, vol. 2, Soc. Math. France, Paris, 1973, pp. 5â34. MR 0603289
- M. S. Baouendi, Solvability of partial differential equations in the traces of analytic solutions of the heat equation, Amer. J. Math. 97 (1975), no. 4, 983â1005. MR 390464, DOI 10.2307/2373684
- Jean-François Colombeau, New generalized functions and multiplication of distributions, North-Holland Mathematics Studies, vol. 84, North-Holland Publishing Co., Amsterdam, 1984. Notas de Matemåtica [Mathematical Notes], 90. MR 738781
- â, New general existence result for partial differential equations in the $C^\infty$ case, Universite de Bordeaux, preprint, 1984.
- J. F. Colombeau, A. Heibig, and M. Oberguggenberger, Generalized solutions to partial differential equations of evolution type, Ecole Norm. Sup., 1991, preprint.
- Jean-François Colombeau, Arnaud Heibig, and Michael Oberguggenberger, Le problĂšme de Cauchy dans un espace de fonctions gĂ©nĂ©ralisĂ©es. I, C. R. Acad. Sci. Paris SĂ©r. I Math. 317 (1993), no. 9, 851â855 (French, with English and French summaries). MR 1246652
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Yu. V. Egorov, On the theory of generalized functions, Uspekhi Mat. Nauk 45 (1990), no. 5(275), 3â40, 222 (Russian); English transl., Russian Math. Surveys 45 (1990), no. 5, 1â49. MR 1084986, DOI 10.1070/RM1990v045n05ABEH002683
- Yu. V. Egorov, Generalized functions and linear differential equations, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2 (1990), 92â95 (Russian). MR 1064933
- Cahit Arf, Untersuchungen ĂŒber reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1â44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- A. Kaneko, Introduction to hyperfunctions, Mathematics and its Applications (Japanese Series), vol. 3, Kluwer Academic Publishers Group, Dordrecht; SCIPRESS, Tokyo, 1988. Translated from the Japanese by Y. Yamamoto. MR 1026013
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771â782. MR 19, DOI 10.2307/2371335
- Nigel Cutland (ed.), Nonstandard analysis and its applications, London Mathematical Society Student Texts, vol. 10, Cambridge University Press, Cambridge, 1988. Papers from a conference held at the University of Hull, Hull, 1986. MR 971063, DOI 10.1017/CBO9781139172110
- Bernard Malgrange, Sur la propagation de la rĂ©gularitĂ© des solutions des Ă©quations Ă coefficients constants, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.) 3(51) (1959), 433â440 (French). MR 161188
- Edward Nelson, Internal set theory: a new approach to nonstandard analysis, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1165â1198. MR 469763, DOI 10.1090/S0002-9904-1977-14398-X
- Abraham Robinson, Non-standard analysis, North-Holland Publishing Co., Amsterdam, 1966. MR 0205854
- Elemer E. Rosinger, Nonlinear partial differential equations, North-Holland Mathematics Studies, vol. 164, North-Holland Publishing Co., Amsterdam, 1990. An algebraic view of generalized solutions. MR 1091547
- M. Oberguggenberger, Multiplication of distributions and applications to partial differential equations, Pitman Research Notes in Mathematics Series, vol. 259, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992. MR 1187755
- M. Oberguggenberger and E. E. Rosinger, Solution of continuous nonlinear PDEs through order completion, North-Holland Math. Studies, vol. 181, North-Holland, Amsterdam, 1994.
- Pierre Schapira, Une Ă©quation aux dĂ©rivĂ©es partielles sans solutions dans lâespace des hyperfonctions, C. R. Acad. Sci. Paris SĂ©r. A-B 265 (1967), A665âA667 (French). MR 221060
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712â730. MR 12, DOI 10.2307/1968951
- Todor Todorov, Pointwise kernels of Schwartz distributions, Proc. Amer. Math. Soc. 114 (1992), no. 3, 817â819. MR 1081703, DOI 10.1090/S0002-9939-1992-1081703-0
- â, An existence result for a class of partial differential equations with smooth coefficients, Advances in Analysis, Probability and Mathematical Physics; Contributions to Nonstandard Analysis, Vol. 314, (S. Albeverio, W. A. J. Luxemburg, M. P. H. Wolff, eds.), Kluwer Academic, Dordrecht, 1995, pp. 107â121.
- François TrĂšves, On local solvability of linear partial differential equations, Bull. Amer. Math. Soc. 76 (1970), 552â571. MR 257550, DOI 10.1090/S0002-9904-1970-12443-0
Bibliographic Information
- Todor Todorov
- Affiliation: Department of Mathematics, California Polytechnic State University, San Luis Obispo, California 93407
- Email: ttodorov@oboe.calpoly.edu
- Received by editor(s): March 7, 1994
- Received by editor(s) in revised form: November 28, 1994
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 673-689
- MSC (1991): Primary 35A05, 35D05, 35E20, 46S10, 46S20
- DOI: https://doi.org/10.1090/S0002-9947-96-01450-X
- MathSciNet review: 1316863