A Tranversality Theorem for Holomorphic Mappings and Stability of Eisenman-Kobayashi Measures
HTML articles powered by AMS MathViewer
- by Sh. Kaliman and M. Zaidenberg
- Trans. Amer. Math. Soc. 348 (1996), 661-672
- DOI: https://doi.org/10.1090/S0002-9947-96-01482-1
- PDF | Request permission
Abstract:
We show that Thom’s Transversality Theorem is valid for holomorphic mappings from Stein manifolds. More precisely, given such a mapping $f:S\rightarrow M$ from a Stein manifold $S$ to a complex manifold $M$ and given an analytic subset $A$ of the jet space $J^{k} (S, M), \; f$ can be approximated in neighborhoods of compacts by holomorphic mappings whose $k$-jet extensions are transversal to $A$. As an application the stability of Eisenman-Kobayshi intrinsic $k$-measures with respect to deleting analytic subsets of codimension $>k$ is proven. This is a generalization of the Campbell-Howard-Ochiai-Ogawa theorem on stability of Kobayashi pseudodistances.References
- V. I. Arnol′d, S. M. Guseĭn-Zade, and A. N. Varchenko, Singularities of differentiable maps. Vol. I, Monographs in Mathematics, vol. 82, Birkhäuser Boston, Inc., Boston, MA, 1985. The classification of critical points, caustics and wave fronts; Translated from the Russian by Ian Porteous and Mark Reynolds. MR 777682, DOI 10.1007/978-1-4612-5154-5
- Robert Brody and Mark Green, A family of smooth hyperbolic hypersurfaces in $P_{3}$, Duke Math. J. 44 (1977), no. 4, 873–874. MR 454080
- L. A. Campbell, A. Howard, and T. Ochiai, Moving holomorphic disks off analytic subsets, Proc. Amer. Math. Soc. 60 (1976), 106–108 (1977). MR 425186, DOI 10.1090/S0002-9939-1976-0425186-0
- L. Andrew Campbell and Roy H. Ogawa, On preserving the Kobayashi pseudodistance, Nagoya Math. J. 57 (1975), 37–47. MR 372258, DOI 10.1017/S0027763000016536
- E. M. Chirka, Complex analytic sets, Mathematics and its Applications (Soviet Series), vol. 46, Kluwer Academic Publishers Group, Dordrecht, 1989. Translated from the Russian by R. A. M. Hoksbergen. MR 1111477, DOI 10.1007/978-94-009-2366-9
- J.-P. Demailly, L. Lempert, B. Shiffman, Algebraic approximation of holomorphic maps from Stein domains to projective manifolds, preprint, 1993.
- Donald A. Eisenman, Intrinsic measures on complex manifolds and holomorphic mappings, Memoirs of the American Mathematical Society, No. 96, American Mathematical Society, Providence, R.I., 1970. MR 0259165
- Mark Lee Green, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math. 97 (1975), 43–75. MR 367302, DOI 10.2307/2373660
- Ian Graham and H. Wu, Some remarks on the intrinsic measures of Eisenman, Trans. Amer. Math. Soc. 288 (1985), no. 2, 625–660. MR 776396, DOI 10.1090/S0002-9947-1985-0776396-4
- Sh. Kaliman, Some facts about Eisenman intrinsic measures, Complex Variables, (to appear).
- Sh. Kaliman, Exotic analytic structures and Eisenman intrinsic measures, Israel J. Math, 88 (1994), 411–423. CMP95:04.
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- Shoshichi Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), no. 3, 357–416. MR 414940, DOI 10.1090/S0002-9904-1976-14018-9
- V. Ya. Lin, M.G. Zaidenberg, Finiteness theorems for holomorphic mappings, Encyclopaedia of Math. Sci., 9(1986), 127-194 (in Russian). English transl. in Encyclopaedia of Math. Sci., Vol.9. Several Complex Variables III. Berlin-Heidelberg-New York, Springer Verlag, 1989, 113-172.
- Donald Alfred Pelles, Holomorphic maps which preserve intrinsic measure, Amer. J. Math. 97 (1975), 1–15. MR 367300, DOI 10.2307/2373658
- E.A. Poletsky, B.V. Shabat, Invariant metrics, Encyclopaedia of Math. Sci., 9(1986), 73-125 (in Russian). English transl. in Encyclopaedia of Math. Sci., Vol.9. Several Complex Variables III. Berlin-Heidelberg-New York, Springer Verlag, 1989, 63-111.
- V. V. Rabotin, A counterexample to two problems of S. Kobayashi, Multidimensional complex analysis (Russian), Akad. Nauk SSSR Sibirsk. Otdel., Inst. Fiz., Krasnoyarsk, 1985, pp. 256–258 (Russian). MR 899365
- H. L. Royden, Remarks on the Kobayashi metric, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970) Lecture Notes in Math., Vol. 185, Springer, Berlin, 1971, pp. 125–137. MR 0304694
- Yum Tong Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976/77), no. 1, 89–100. MR 435447, DOI 10.1007/BF01390170
- René Thom, Un lemme sur les applications différentiables, Bol. Soc. Mat. Mexicana (2) 1 (1956), 59–71 (French). MR 102115
- Hassler Whitney, Complex analytic varieties, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1972. MR 0387634
Bibliographic Information
- Sh. Kaliman
- Affiliation: Department of Mathematics & Computer Science, University of Miami, Coral Gables, Florida 33124
- MR Author ID: 97125
- Email: kaliman@paris-gw.cs.miami.edu
- M. Zaidenberg
- Affiliation: Université Grenoble I, Institut Fourier des Mathématiques, B.P. 74, 38402 Saint Martin d’Hères–Cédex, France
- MR Author ID: 196553
- Email: zaidenbe@fourier.grenet.fr
- Received by editor(s): November 16, 1994
- Additional Notes: Supported by General Research Support Award
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 661-672
- MSC (1991): Primary 32E10, 32H02, 58C10, 58A35, 58A07
- DOI: https://doi.org/10.1090/S0002-9947-96-01482-1
- MathSciNet review: 1321580