A Multivariate Faa di Bruno Formula with Applications
HTML articles powered by AMS MathViewer
- by G. M. Constantine and T. H. Savits
- Trans. Amer. Math. Soc. 348 (1996), 503-520
- DOI: https://doi.org/10.1090/S0002-9947-96-01501-2
- PDF | Request permission
Abstract:
A multivariate Faa di Bruno formula for computing arbitrary partial derivatives of a function composition is presented. It is shown, by way of a general identity, how such derivatives can also be expressed in the form of an infinite series. Applications to stochastic processes and multivariate cumulants are then delineated.References
- C. S. Chen and T. H. Savits, Some remarks on compound nonhomogeneous Poisson processes, Statist. Probab. Lett. 17 (1993), no. 3, 179–187. MR 1229935, DOI 10.1016/0167-7152(93)90165-F
- Gregory M. Constantine, Combinatorial theory and statistical design, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1987. MR 891185
- G. M. Constantine and T. H. Savits, A stochastic process interpretation of partition identities, SIAM J. Discrete Math. 7 (1994), no. 2, 194–202. MR 1271991, DOI 10.1137/S0895480192232692
- Faa di Bruno, C. F. (1855). Note sur une nouvelle formule du calcul differentiel. Quart. J. Math., 1, 359-360.
- Hoppe, R. (1871). Ueber independente Darstellung der höheren differentialquotienten. Mathematische Annalen, 4, 85-87.
- Leetsch C. Hsu, Finding some strange identities via Faa di Bruno’s formula, J. Math. Res. Exposition 13 (1993), no. 2, 159–165 (English, with English and Chinese summaries). MR 1223903
- Lacroix, S. F. (1810). Traité du calcul integral. Tome Premier, Paris.
- L. Lovász, Combinatorial problems and exercises, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 537284
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Peter McCullagh, Tensor methods in statistics, Monographs on Statistics and Applied Probability, Chapman & Hall, London, 1987. MR 907286
- Most, R. (1871). Ueber die höheren differentialquotienten. Mathematische Annalen, 4, 499-504.
- Emanuel Parzen, Stochastic processes, Holden-Day Series in Probability and Statistics, Holden-Day, Inc., San Francisco, Calif., 1962. MR 0139192
Bibliographic Information
- G. M. Constantine
- Affiliation: Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Email: gmc@vms.cis.pitt.edu
- T. H. Savits
- Affiliation: Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Email: ths@stat.pitt.edu
- Received by editor(s): January 20, 1994
- Additional Notes: The first author was funded under a Fulbright grant; the second author was supported by NSF DMS-9203444 and NSA MDA 904-95-H1011
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 503-520
- MSC (1991): Primary 05A17, 05A19; Secondary 26B05, 60G20
- DOI: https://doi.org/10.1090/S0002-9947-96-01501-2
- MathSciNet review: 1325915