An Index Theory For Quantum Dynamical Semigroups
HTML articles powered by AMS MathViewer
- by B. V. Rajarama Bhat
- Trans. Amer. Math. Soc. 348 (1996), 561-583
- DOI: https://doi.org/10.1090/S0002-9947-96-01520-6
- PDF | Request permission
Abstract:
W. Arveson showed a way of associating continuous tensor product systems of Hilbert spaces with endomorphism semigroups of type I factors. We do the same for general quantum dynamical semigroups through a dilation procedure. The product system so obtained is the index and its dimension is a numerical invariant for the original semigroup.References
- Luigi Accardi, Alberto Frigerio, and John T. Lewis, Quantum stochastic processes, Publ. Res. Inst. Math. Sci. 18 (1982), no. 1, 97–133. MR 660823, DOI 10.2977/prims/1195184017
- R. Alicki and K. Lendi, Quantum dynamical semigroups and applications, Lecture Notes in Physics, vol. 286, Springer-Verlag, Berlin, 1987. MR 911678, DOI 10.1007/3-540-18276-4_{5}
- Arveson, W. : Continuous Analogues of Fock Space, Mem. Amer. Math. Soc.,Vol. 80, No.409 (1989).
- William Arveson, An addition formula for the index of semigroups of endomorphisms of $B(H)$, Pacific J. Math. 137 (1989), no. 1, 19–36. MR 983326, DOI 10.2140/pjm.1989.137.19
- William Arveson, The spectral $C^*$-algebra of an $E_0$-semigroup, Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 1–15. MR 1077377, DOI 10.1090/pspum/051.1/1077377
- William Arveson, Continuous analogues of Fock space. II. The spectral $C^*$-algebra, J. Funct. Anal. 90 (1990), no. 1, 138–205. MR 1047579, DOI 10.1016/0022-1236(90)90082-V
- William Arveson, Continuous analogues of Fock space. III. Singular states, J. Operator Theory 22 (1989), no. 1, 165–205. MR 1026080
- William Arveson, Continuous analogues of Fock space. IV. Essential states, Acta Math. 164 (1990), no. 3-4, 265–300. MR 1049159, DOI 10.1007/BF02392756
- William Arveson, $C^*$-algebras associated with sets of semigroups of isometries, Internat. J. Math. 2 (1991), no. 3, 235–255. MR 1104118, DOI 10.1142/S0129167X91000156
- Huzihiro Araki and E. J. Woods, Addenda: Complete Boolean algebras of type $\textrm {I}$ factors, Publ. Res. Inst. Math. Sci. Ser. A 2 (1966/1967), 451–452. MR 0209852, DOI 10.2977/prims/1195195771
- Bhat, B.V.R., Fagnola F. : On minimality of Evans-Hudson flows, (preprint).
- Bhat, B.V.R. : Markov Dilations of Nonconservative Quantum Dynamical Semigroups and a Quantum Boundary Theory, Ph. D. Thesis, Indian Statistical Institute, New Delhi (1993).
- Bhat, B.V. R., Parthasarathy, K.R. : Markov dilations of nonconservative dynamical semigroups and a quantum boundary theory, Ann. Inst. H. Poincaré Probab. Statist., (to appear).
- Bhat, B.V. R., Parthsarathy, K.R. : Kolmogorov’s existence theorem for Markov processes in $C^*$ algebras, Proc. Ind. Acad. Sci. Math. Sci., 103 (1994), 253-262.
- E. B. Davies, Quantum theory of open systems, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0489429
- E. B. Davies, Quantum dynamical semigroups and the neutron diffusion equation, Rep. Mathematical Phys. 11 (1977), no. 2, 169–188. MR 503331, DOI 10.1016/0034-4877(77)90059-3
- Edward Brian Davies, One-parameter semigroups, London Mathematical Society Monographs, vol. 15, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. MR 591851
- E. B. Davies, Generators of dynamical semigroups, J. Functional Analysis 34 (1979), no. 3, 421–432. MR 556264, DOI 10.1016/0022-1236(79)90085-5
- Dunham Jackson, A class of orthogonal functions on plane curves, Ann. of Math. (2) 40 (1939), 521–532. MR 80, DOI 10.2307/1968936
- D. E. Evans and J. T. Lewis, Dilations of irreversible evolutions in algebraic quantum theory, Communications Dublin Inst. Advanced Studies. Ser. A 24 (1977), v+104. MR 489494
- Gérard G. Emch, Minimal dilations of CP-flows, $\textrm {C}^{\ast }$-algebras and applications to physics (Proc. Second Japan-USA Sem., Los Angeles, Calif., 1977) Lecture Notes in Math., vol. 650, Springer, Berlin, 1978, pp. 156–159. MR 504761
- Vittorio Gorini, Andrzej Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of $N$-level systems, J. Mathematical Phys. 17 (1976), no. 5, 821–825. MR 406206, DOI 10.1063/1.522979
- Alain Guichardet, Symmetric Hilbert spaces and related topics, Lecture Notes in Mathematics, Vol. 261, Springer-Verlag, Berlin-New York, 1972. Infinitely divisible positive definite functions. Continuous products and tensor products. Gaussian and Poissonian stochastic processes. MR 0493402, DOI 10.1007/BFb0070306
- R. L. Hudson and K. R. Parthasarathy, Stochastic dilations of uniformly continuous completely positive semigroups, Acta Appl. Math. 2 (1984), no. 3-4, 353–378. MR 753700, DOI 10.1007/BF02280859
- G. Lindblad, On the generators of quantum dynamical semigroups, Comm. Math. Phys. 48 (1976), no. 2, 119–130. MR 413878, DOI 10.1007/BF01608499
- Paul-André Meyer, Quantum probability for probabilists, Lecture Notes in Mathematics, vol. 1538, Springer-Verlag, Berlin, 1993. MR 1222649, DOI 10.1007/978-3-662-21558-6
- K. R. Parthasarathy, An introduction to quantum stochastic calculus, Monographs in Mathematics, vol. 85, Birkhäuser Verlag, Basel, 1992. MR 1164866, DOI 10.1007/978-3-0348-8641-3
- K. R. Parthasarathy and K. Schmidt, Positive definite kernels, continuous tensor products, and central limit theorems of probability theory, Lecture Notes in Mathematics, Vol. 272, Springer-Verlag, Berlin-New York, 1972. MR 0622034
- Robert T. Powers, An index theory for semigroups of $^*$-endomorphisms of ${\scr B}({\scr H})$ and type $\textrm {II}_1$ factors, Canad. J. Math. 40 (1988), no. 1, 86–114. MR 928215, DOI 10.4153/CJM-1988-004-3
- Robert T. Powers, A nonspatial continuous semigroup of $*$-endomorphisms of ${\mathfrak {B}}({\mathfrak {H}})$, Publ. Res. Inst. Math. Sci. 23 (1987), no. 6, 1053–1069. MR 935715, DOI 10.2977/prims/1195175872
- Robert T. Powers and Geoffrey Price, Continuous spatial semigroups of $*$-endomorphisms of ${\mathfrak {B}}({\mathfrak {H}})$, Trans. Amer. Math. Soc. 321 (1990), no. 1, 347–361. MR 974524, DOI 10.1090/S0002-9947-1990-0974524-0
- Robert T. Powers and Derek W. Robinson, An index for continuous semigroups of $*$-endomorphisms of ${\mathfrak {B}}({\mathfrak {H}})$, J. Funct. Anal. 84 (1989), no. 1, 85–96. MR 999489, DOI 10.1016/0022-1236(89)90111-0
- Geoffrey L. Price, Shifts on type $\textrm {II}_1$ factors, Canad. J. Math. 39 (1987), no. 2, 492–511. MR 899846, DOI 10.4153/CJM-1987-021-2
- Jean-Luc Sauvageot, Markov quantum semigroups admit covariant Markov $C^\ast$-dilations, Comm. Math. Phys. 106 (1986), no. 1, 91–103. MR 853979, DOI 10.1007/BF01210927
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Béla Sz.-Nagy and Ciprian Foiaş, Analyse harmonique des opérateurs de l’espace de Hilbert, Masson et Cie, Paris; Akadémiai Kiadó, Budapest, 1967 (French). MR 0225183
- V. S. Varadarajan, Geometry of quantum theory, 2nd ed., Springer-Verlag, New York, 1985. MR 805158
- G. F. Vincent-Smith, Dilation of a dissipative quantum dynamical system to a quantum Markov process, Proc. London Math. Soc. (3) 49 (1984), no. 1, 58–72. MR 743370, DOI 10.1112/plms/s3-49.1.58
Bibliographic Information
- B. V. Rajarama Bhat
- Affiliation: The Fields Institute, 222 College Street, Toronto, Ontario, Canada
- MR Author ID: 314081
- Email: bhat@fields.utoronto.ca E-mail address: bhat@math.toronto.edu
- Received by editor(s): May 27, 1994
- Additional Notes: This research was supported by a fellowship from INDAM (ITALY)
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 561-583
- MSC (1991): Primary 46L57, 81S25, 46L55
- DOI: https://doi.org/10.1090/S0002-9947-96-01520-6
- MathSciNet review: 1329528