## Asymptotic Expansion for Layer Solutions of a Singularly Perturbed Reaction-Diffusion System

HTML articles powered by AMS MathViewer

- by Xiao-Biao Lin PDF
- Trans. Amer. Math. Soc.
**348**(1996), 713-753 Request permission

## Abstract:

For a singularly perturbed $n$-dimensional system of reaction– diffusion equations, assuming that the 0th order solutions possess boundary and internal layers and are stable in each regular and singular region, we construct matched asymptotic expansions for formal solutions in all the regular, boundary, internal and initial layers to any desired order in $\epsilon$. The formal solution shows that there is an invariant manifold of wave-front-like solutions that attracts other nearby solutions. We also give conditions for the wave-front-like solutions to converge slowly to stationary solutions on that manifold.## References

- Nicholas Alikakos, Peter W. Bates, and Giorgio Fusco,
*Slow motion for the Cahn-Hilliard equation in one space dimension*, J. Differential Equations**90**(1991), no. 1, 81–135. MR**1094451**, DOI 10.1016/0022-0396(91)90163-4 - S. B. Angenent, J. Mallet-Paret, and L. A. Peletier,
*Stable transition layers in a semilinear boundary value problem*, J. Differential Equations**67**(1987), no. 2, 212–242. MR**879694**, DOI 10.1016/0022-0396(87)90147-1 - J. Carr and R. L. Pego,
*Metastable patterns in solutions of $u_t=\epsilon ^2u_{xx}-f(u)$*, Comm. Pure Appl. Math.**42**(1989), no. 5, 523–576. MR**997567**, DOI 10.1002/cpa.3160420502 - Shui Nee Chow, Jack K. Hale, and John Mallet-Paret,
*An example of bifurcation to homoclinic orbits*, J. Differential Equations**37**(1980), no. 3, 351–373. MR**589997**, DOI 10.1016/0022-0396(80)90104-7 - Giuseppe Da Prato and Pierre Grisvard,
*Equations d’évolution abstraites non linéaires de type parabolique*, Ann. Mat. Pura Appl. (4)**120**(1979), 329–396 (French, with English summary). MR**551075**, DOI 10.1007/BF02411952 - Wiktor Eckhaus,
*Matching principles and composite expansions*, Singular perturbations and boundary layer theory (Proc. Conf., École Centrale, Lyon, 1976) Lecture Notes in Math., Vol. 594, Springer, Berlin, 1977, pp. 146–177. MR**0487197** - Wiktor Eckhaus,
*Asymptotic analysis of singular perturbations*, Studies in Mathematics and its Applications, vol. 9, North-Holland Publishing Co., Amsterdam-New York, 1979. MR**553107** - John W. Evans,
*Nerve axon equations. I. Linear approximations*, Indiana Univ. Math. J.**21**(1971/72), 877–885. MR**292531**, DOI 10.1512/iumj.1972.21.21071 - John W. Evans,
*Nerve axon equations. II. Stability at rest*, Indiana Univ. Math. J.**22**(1972/73), 75–90. MR**323372**, DOI 10.1512/iumj.1972.22.22009 - John W. Evans,
*Nerve axon equations. III. Stability of the nerve impulse*, Indiana Univ. Math. J.**22**(1972/73), 577–593. MR**393890**, DOI 10.1512/iumj.1972.22.22048 - John W. Evans,
*Nerve axon equations. IV. The stable and the unstable impulse*, Indiana Univ. Math. J.**24**(1974/75), no. 12, 1169–1190. MR**393891**, DOI 10.1512/iumj.1975.24.24096 - P. C. Fife,
*Pattern formation in reacting and diffusing systems*, J. Chem. Phys.,**64**(1976), 554–564. - Paul C. Fife,
*Singular perturbation and wave front techniques in reaction-diffusion problems*, Asymptotic methods and singular perturbations (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1976) SIAM-AMS Proceedings, Vol. X, Amer. Math. Soc., Providence, R.I., 1976, pp. 23–50. MR**0521628** - Paul C. Fife,
*Dynamics of internal layers and diffusive interfaces*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 53, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. MR**981594**, DOI 10.1137/1.9781611970180 - Paul C. Fife,
*Diffusive waves in inhomogeneous media*, Proc. Edinburgh Math. Soc. (2)**32**(1989), no. 2, 291–315. MR**1001128**, DOI 10.1017/S0013091500028704 - Paul C. Fife and Ling Hsiao,
*The generation and propagation of internal layers*, Nonlinear Anal.**12**(1988), no. 1, 19–41. MR**924750**, DOI 10.1016/0362-546X(88)90010-7 - G. Fusco and J. K. Hale,
*Slow-motion manifolds, dormant instability, and singular perturbations*, J. Dynam. Differential Equations**1**(1989), no. 1, 75–94. MR**1010961**, DOI 10.1007/BF01048791 - Jack K. Hale and X.-B. Lin,
*Heteroclinic orbits for retarded functional-differential equations*, J. Differential Equations**65**(1986), no. 2, 175–202. MR**861515**, DOI 10.1016/0022-0396(86)90032-X - Jack K. Hale and Kunimochi Sakamoto,
*Existence and stability of transition layers*, Japan J. Appl. Math.**5**(1988), no. 3, 367–405. MR**965871**, DOI 10.1007/BF03167908 - Christopher K. R. T. Jones,
*Stability of the travelling wave solution of the FitzHugh-Nagumo system*, Trans. Amer. Math. Soc.**286**(1984), no. 2, 431–469. MR**760971**, DOI 10.1090/S0002-9947-1984-0760971-6 - C. Jones and N. Kopell,
*Tracking invariant manifolds with differential forms in singularly perturbed systems*, J. Differential Equations,**108**(1994), 64–88. - Xiao-Biao Lin,
*Shadowing lemma and singularly perturbed boundary value problems*, SIAM J. Appl. Math.**49**(1989), no. 1, 26–54. MR**978824**, DOI 10.1137/0149002 - Xiao-Biao Lin,
*Heteroclinic bifurcation and singularly perturbed boundary value problems*, J. Differential Equations**84**(1990), no. 2, 319–382. MR**1047573**, DOI 10.1016/0022-0396(90)90082-Z - Alessandra Lunardi,
*On the evolution operator for abstract parabolic equations*, Israel J. Math.**60**(1987), no. 3, 281–314. MR**937793**, DOI 10.1007/BF02780395 - Yasumasa Nishiura and Hiroshi Fujii,
*Stability of singularly perturbed solutions to systems of reaction-diffusion equations*, SIAM J. Math. Anal.**18**(1987), no. 6, 1726–1770. Translated in J. Soviet Math. 45 (1989), no. 3, 1205–1218. MR**911661**, DOI 10.1137/0518124 - Kenneth J. Palmer,
*Exponential dichotomies and transversal homoclinic points*, J. Differential Equations**55**(1984), no. 2, 225–256. MR**764125**, DOI 10.1016/0022-0396(84)90082-2 - A. Pazy,
*Semigroups of operators in Banach spaces*, Equadiff 82 (Würzburg, 1982) Lecture Notes in Math., vol. 1017, Springer, Berlin, 1983, pp. 508–524. MR**726608**, DOI 10.1007/BFb0103275 - D. H. Sattinger,
*On the stability of waves of nonlinear parabolic systems*, Advances in Math.**22**(1976), no. 3, 312–355. MR**435602**, DOI 10.1016/0001-8708(76)90098-0 - D. H. Sattinger,
*Weighted norms for the stability of traveling waves*, J. Differential Equations**25**(1977), no. 1, 130–144. MR**447813**, DOI 10.1016/0022-0396(77)90185-1 - Martin Schechter,
*Principles of functional analysis*, Academic Press, New York-London, 1971. MR**0445263** - Eugenio Sinestrari,
*On the abstract Cauchy problem of parabolic type in spaces of continuous functions*, J. Math. Anal. Appl.**107**(1985), no. 1, 16–66. MR**786012**, DOI 10.1016/0022-247X(85)90353-1

## Additional Information

**Xiao-Biao Lin**- Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695–8205
- Email: xblin@xblsun.math.ncsu.edu
- Received by editor(s): July 5, 1994
- Received by editor(s) in revised form: January 13, 1995
- Additional Notes: Research partially supported by NSFgrant DMS9002803 and DMS9205535.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**348**(1996), 713-753 - MSC (1991): Primary 35K57, 35B25; Secondary 34E10, 34E15
- DOI: https://doi.org/10.1090/S0002-9947-96-01542-5
- MathSciNet review: 1333395