Berezin Quantization and Reproducing Kernels on Complex Domains
HTML articles powered by AMS MathViewer
- by Miroslav Englis
- Trans. Amer. Math. Soc. 348 (1996), 411-479
- DOI: https://doi.org/10.1090/S0002-9947-96-01551-6
- PDF | Request permission
Abstract:
Let $\Omega$ be a non-compact complex manifold of dimension $n$, $\omega =\partial \overline \partial \Psi$ a Kähler form on $\Omega$, and $K_\alpha ( x,\overline y)$ the reproducing kernel for the Bergman space $A^2_\alpha$ of all analytic functions on $\Omega$ square-integrable against the measure $e^{-\alpha \Psi } |\omega ^n|$. Under the condition \[ K_\alpha ( x,\overline x)= \lambda _\alpha e^{\alpha \Psi (x)} \] F. A. Berezin [Math. USSR Izvestiya 8 (1974), 1109–1163] was able to establish a quantization procedure on $(\Omega ,\omega )$ which has recently attracted some interest. The only known instances when the above condition is satisfied, however, are just $\Omega = \mathbf {C} ^n$ and $\Omega$ a bounded symmetric domain (with the euclidean and the Bergman metric, respectively). In this paper, we extend the quantization procedure to the case when the above condition is satisfied only asymptotically, in an appropriate sense, as $\alpha \to +\infty$. This makes the procedure applicable to a wide class of complex Kähler manifolds, including all planar domains with the Poincaré metric (if the domain is of hyperbolic type) or the euclidean metric (in the remaining cases) and some pseudoconvex domains in $\mathbf {C}^n$. Along the way, we also fix two gaps in Berezin’s original paper, and discuss, for $\Omega$ a domain in $\mathbf {C}^n$, a variant of the quantization which uses weighted Bergman spaces with respect to the Lebesgue measure instead of the Kähler-Liouville measure $|\omega ^n|$.References
- Michael Beals, Charles Fefferman, and Robert Grossman, Strictly pseudoconvex domains in $\textbf {C}^{n}$, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 2, 125–322. MR 684898, DOI 10.1090/S0273-0979-1983-15087-5
- F. A. Berezin, Quantization, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116–1175 (Russian). MR 0395610
- F. A. Berezin, Quantization in complex symmetric spaces, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 363–402, 472 (Russian). MR 0508179
- C. A. Berger and L. A. Coburn, Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc. 301 (1987), no. 2, 813–829. MR 882716, DOI 10.1090/S0002-9947-1987-0882716-4
- C. A. Berger and L. A. Coburn, Heat flow and Berezin-Toeplitz estimates, Amer. J. Math. 116 (1994), no. 3, 563–590. MR 1277446, DOI 10.2307/2374991
- C. A. Berger, L. A. Coburn, and K. H. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus, Amer. J. Math. 110 (1988), no. 5, 921–953. MR 961500, DOI 10.2307/2374698
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- David Borthwick, Andrzej Lesniewski, and Harald Upmeier, Nonperturbative deformation quantization of Cartan domains, J. Funct. Anal. 113 (1993), no. 1, 153–176. MR 1214901, DOI 10.1006/jfan.1993.1050 M. Cahen, S. Gutt, J. Rawnsley, Quantization of Kähler manifolds, I: Geometric interpretation of Berezin’s quantization, J. Geom. Physics 7 (1990), 45–62. M. Cahen, S. Gutt, J. Rawnsley, Quantization of Kähler manifolds, I: Geometric interpretation of Berezin’s quantization II, Trans. Amer. Math. Soc. 337 (1993), 73–98. M. Cahen, S. Gutt, J. Rawnsley, Quantization of Kähler manifolds, I: Geometric interpretation of Berezin’s quantization III, Letters in Math. Phys. 30 (1994), 291–305.
- L. A. Coburn, Berezin-Toeplitz quantization, Algebraic methods in operator theory, Birkhäuser Boston, Boston, MA, 1994, pp. 101–108. MR 1284938
- L. A. Coburn, Deformation estimates for the Berezin-Toeplitz quantization, Comm. Math. Phys. 149 (1992), no. 2, 415–424. MR 1186036, DOI 10.1007/BF02097632 L.A. Coburn, J. Xia, Toeplitz algebras and Rieffel deformations, Comm. Math. Phys. 168 (1995), 23–38.
- Dennis M. DeTurck and Jerry L. Kazdan, Some regularity theorems in Riemannian geometry, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 3, 249–260. MR 644518, DOI 10.24033/asens.1405
- Miroslav Engliš, Density of algebras generated by Toeplitz operator on Bergman spaces, Ark. Mat. 30 (1992), no. 2, 227–243. MR 1289753, DOI 10.1007/BF02384872 M. Engliš, Asymptotics of reproducing kernels on a plane domain, Proceedings Amer. Math. Soc. 123 (1995), 3157–3160. M. Engliš, Asymptotics of the Berezin transform and quantization on planar domains, Duke Math. J. 79 (1995), 57–76. M. Engliš, J. Peetre, On the correspondence principle for the quantized annulus, Math. Scand. (to appear).
- J. Faraut and A. Korányi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal. 88 (1990), no. 1, 64–89. MR 1033914, DOI 10.1016/0022-1236(90)90119-6 J. Faraut, A. Korányi, Analysis on symmetric cones, Clarendon Press, Oxford, 1994.
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
- Marek Jarnicki and Peter Pflug, Invariant distances and metrics in complex analysis, De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin, 1993. MR 1242120, DOI 10.1515/9783110870312 S. Klimek, A. Lesniewski, Quantum Riemann surfaces, I: The unit disc, Comm. Math. Phys. 146 (1992), 103–122. S. Klimek, A. Lesniewski, Quantum Riemann surfaces II: The discrete series, Letters in Math. Phys. 24 (1992), 125–139. S.G. Krantz, Convexity in complex analysis, in: Several complex variables and complex geometry, part 1 (E. Bedford, J.P. D’Angelo, R.E. Greene, S.G. Krantz, eds.), Proc. Symposia Pure Math., vol. 52, 1994, pp. 119–138.
- S. H. Liu and M. Stoll, Projections on spaces of holomorphic functions on certain domains in $\textbf {C}^2$, Complex Variables Theory Appl. 17 (1992), no. 3-4, 223–233. MR 1147053, DOI 10.1080/17476939208814515
- Ngaiming Mok, Complete Kähler-Einstein metrics on bounded domains locally of finite volume at some boundary points, Math. Ann. 281 (1988), no. 1, 23–30. MR 944600, DOI 10.1007/BF01449213
- Ngaiming Mok and Shing-Tung Yau, Completeness of the Kähler-Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions, The mathematical heritage of Henri Poincaré, Part 1 (Bloomington, Ind., 1980) Proc. Sympos. Pure Math., vol. 39, Amer. Math. Soc., Providence, RI, 1983, pp. 41–59. MR 720056, DOI 10.1090/pspum/039.1/720056
- Carlos Moreno, $\ast$-products on some Kähler manifolds, Lett. Math. Phys. 11 (1986), no. 4, 361–372. MR 845747, DOI 10.1007/BF00574162
- Jaak Peetre, The Berezin transform and Ha-plitz operators, J. Operator Theory 24 (1990), no. 1, 165–186. MR 1086552
- Jaak Peetre, Correspondence principle for the quantized annulus, Romanovski polynomials, and Morse potential, J. Funct. Anal. 117 (1993), no. 2, 377–400. MR 1244941, DOI 10.1006/jfan.1993.1131
- Marc A. Rieffel, Quantization and $C^\ast$-algebras, $C^\ast$-algebras: 1943–1993 (San Antonio, TX, 1993) Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 66–97. MR 1292010, DOI 10.1090/conm/167/1292010
- Marc A. Rieffel, Deformation quantization for actions of $\textbf {R}^d$, Mem. Amer. Math. Soc. 106 (1993), no. 506, x+93. MR 1184061, DOI 10.1090/memo/0506
- Maciej Skwarczyński, Biholomorphic invariants related to the Bergman function, Dissertationes Math. (Rozprawy Mat.) 173 (1980), 59. MR 575756
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- Toshikazu Sunada, Holomorphic equivalence problem for bounded Reinhardt domains, Math. Ann. 235 (1978), no. 2, 111–128. MR 481064, DOI 10.1007/BF01405009
Bibliographic Information
- Miroslav Englis
- Email: englis@csearn.bitnet
- Received by editor(s): March 15, 1995
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 411-479
- MSC (1991): Primary 46N50, 32A07; Secondary 46E22, 32C17, 32H10, 81S99
- DOI: https://doi.org/10.1090/S0002-9947-96-01551-6
- MathSciNet review: 1340173