Even Linkage Classes
HTML articles powered by AMS MathViewer
- by Scott Nollet
- Trans. Amer. Math. Soc. 348 (1996), 1137-1162
- DOI: https://doi.org/10.1090/S0002-9947-96-01552-8
- PDF | Request permission
Abstract:
In this paper we generalize the $\mathcal {E}$ and $\mathcal {N}$-type resolutions used by Martin-Deschamps and Perrin for curves in $\mathbb {P}^{3}$ to subschemes of pure codimension in projective space, and shows that these resolutions are interchanged by the mapping cone procedure under a simple linkage. Via these resolutions, Rao’s correspondence is extended to give a bijection between even linkage classes of subschemes of pure codimension two and stable equivalence classes of reflexive sheaves $\mathcal {E}$ satisfying $H^{1}_{*}( \mathcal {E})=0$ and $\mathcal {E}xt^{1}( \mathcal {E}^{\vee }, \mathcal {O})=0$. Further, these resolutions are used to extend the work of Martin-Deschamps and Perrin for Cohen-Macaulay curves in $\mathbb {P}^{3}$ to subschemes of pure codimension two in $\mathbb {P}^{n}$. In particular, even linkage classes of such subschemes satisfy the Lazarsfeld-Rao property and any minimal subscheme for an even linkage class links directly to a minimal subscheme for the dual class.References
- Edoardo Ballico, Giorgio Bolondi, and Juan Carlos Migliore, The Lazarsfeld-Rao problem for liaison classes of two-codimensional subschemes of $\textbf {P}^n$, Amer. J. Math. 113 (1991), no. 1, 117–128. MR 1087803, DOI 10.2307/2374823
- Giorgio Bolondi and Juan C. Migliore, The structure of an even liaison class, Trans. Amer. Math. Soc. 316 (1989), no. 1, 1–37. MR 968882, DOI 10.1090/S0002-9947-1989-0968882-2
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 217086
- Robin Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin-New York, 1970. Notes written in collaboration with C. Musili. MR 0282977, DOI 10.1007/BFb0067839
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Robin Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121–176. MR 597077, DOI 10.1007/BF01467074
- R. Hartshorne, Generalized Divisors on Gorenstein Schemes, K-Theory 8 (1994), 287-339.
- Steven L. Kleiman, Geometry on Grassmannians and applications to splitting bundles and smoothing cycles, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 281–297. MR 265371, DOI 10.1007/BF02684605
- Robert Lazarsfeld and Prabhakar Rao, Linkage of general curves of large degree, Algebraic geometry—open problems (Ravello, 1982) Lecture Notes in Math., vol. 997, Springer, Berlin, 1983, pp. 267–289. MR 714753, DOI 10.1007/BFb0061648
- Mireille Martin-Deschamps and Daniel Perrin, Sur la classification des courbes gauches, Astérisque 184-185 (1990), 208 (French). MR 1073438
- M. Martin-Deschamps and D. Perrin, Construction de Courbes Lisses: un Théorème de Bertini, vol. 22, Laboratoire de Mathématiques de l’Ecole Normale Supérieure, 1992.
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- J. Migliore, An Introduction to Deficiency Modules and Liaison Theory for Subschemes of Projective Space, Global Analysis Research Center, Seoul National University, Lecture Notes Series 24 (1994).
- C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271–302 (French). MR 364271, DOI 10.1007/BF01425554
- Dunham Jackson, A class of orthogonal functions on plane curves, Ann. of Math. (2) 40 (1939), 521–532. MR 80, DOI 10.2307/1968936
- Prabhakar Rao, Liaison equivalence classes, Math. Ann. 258 (1981/82), no. 2, 169–173. MR 641822, DOI 10.1007/BF01450532
Bibliographic Information
- Scott Nollet
- Affiliation: 2919 Fulton St., Berkeley, California 94705
- MR Author ID: 364618
- Email: nollet@math.berkeley.edu
- Received by editor(s): March 6, 1995
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 1137-1162
- MSC (1991): Primary 14M06; Secondary 14M12, 13C40
- DOI: https://doi.org/10.1090/S0002-9947-96-01552-8
- MathSciNet review: 1340182